

CICS Transaction Server for VSE/ESA IBM

Sample Applications Guide
Release 1

 SC33-1713-00

CICS Transaction Server for VSE/ESA IBM

Sample Applications Guide
Release 1

 SC33-1713-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 163.

First Edition (June 1999)

This edition applies to Release 1 of CICS Transaction Server for VSE/ESA, program number 5648-054, and to all subsequent
versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make any comments, please use
one of the methods described there.

 Copyright International Business Machines Corporation 1989,1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Preface . vii
Notes on terminology . viii

Chapter 1. Introduction . 1
The CUA text level application . 1
The FILEA sample application programs . 1
The CICS intercommunication sample application programs 2

Part 1. The common user access interface (CUA) sample 3

Chapter 2. Introduction to the CUA guidelines 5
Systems Application Architecture . 5
The CUA interface . 6
Basic mapping support . 8
The advantages of CUA . 9
Designing the user interface . 9

Chapter 3. BMS and CUA panel displays . 11
Panel elements . 11
Color and emphasis . 13

Chapter 4. BMS and CUA panel entry and selection 15
Moving the selection cursor . 15
Selection fields . 16
Entry fields . 17
Action lists . 18

Chapter 5. BMS and CUA user dialogs . 19
Prompt . 19
Action bar and pull-downs . 19
Pull-downs and pop-ups . 22
Message area . 23
Command area . 24
Function key area . 25
Scrolling panel areas . 25

Chapter 6. BMS application design for the CUA entry model 27

Chapter 7. BMS application design for the CUA text model 29
Some application design considerations . 29
The end-user’s view . 33
The designer’s view . 47

Chapter 8. Installing and running the CUA text model application 55
Generating the BMS maps . 55
Translating, compiling, and link-editing the application programs 55
Creating the VSAM files . 56
Installing and running the application on your CICS region 65

 Copyright IBM Corp. 1989,1999 iii

Chapter 9. CUA text model program descriptions 67
Program DFH0VT1 – primary panel . 67
Program DFH0VLST – list panel handler . 69
Program DFH0VNEW – new customer panel processing 72
Program DFH0VBRW – browse customer details panel processing 75
Program DFH0VUPD – update customer record panel processing 77
Program DFH0VDEL – delete customer details panel processing 80
Program DFH0VOL – overlay handler . 84
Program DFH0VOPN – open file pop-up handler 86
Program DFH0VPRT – print pop-up handler . 87
Program DFH0VSAS – save customer details pop-up handler 88
Program DFH0VHLP – help pop-up handler . 89
Program DFH0VHP – contextual help pop-up handler 90
Program DFH0VABT – about pop-up handler 91
Program DFH0VTBL – table router . 92
Program DFH0VAB – abend handler . 93
Program DFH0VRIO – customer data file handler 94
Program DFH0VLIO – help file handler . 96

Chapter 10. CUA text model file and copybook descriptions 97
File: DFH0FUS customer detail file . 97
File: DFH0FAI customer detail file - alternate index 97
File: DFH0FHLP help pop-up data file . 97
Copybook: DFH0BCR customer record layout 97
Copybook: DFH0BCA commarea . 97
Copybook: DFH0BFKT variable function key layout 98
Copybook: DFH0BFPD redefinition of file pull-down DSECT 98
Copybook: DFH0BHPD redefinition of help pull-down DSECT 98
Copybook: DFH0BHP redefinition of help pop-up 98
Copybook: DFH0BHT help file key table . 98
Copybook: DFH0BLST redefinition of the list base panel 98
Copybook: DFH0BMSG application message table 98
Copybook: DFH0BRT program routing control table 99
Copybook: DFH0BTSQ TS queue details . 99
Copybook: DFH0BHR help text TS queue layout 99

Chapter 11. CUA text model BMS maps . 101
Map T1: map set DFH0T1 (primary panel to sample application) 102
Map LST: map set DFH0LST (list processing - base panel) 103
Map NEW: map set DFH0NEW (new customer record - base panel) 105
Map BRW: map set DFH0BRW (browse customer details - base panel) . . . 106
Map UPD: map set DFH0UPD (update customer details - base panel) 107
Map DEL: map set DFH0DEL (Delete a customer record - base panel) . . . 108
Map FPD: map set DFH0FPD (file pull-down) 110
Map HPD: map set DFH0HPD (help pull-down) 111
Map OPN: map set DFH0OPN (file-open pop-up) 112
Map PRT: map set DFH0PRT (print pop-up) 113
Map SAS: map set DFH0SAS (save changed customer record pop-up) . . . 114
Map HPOP: map set DFH0HP (contextual help pop-up) 115
Map ABT: map set DFH0ABT (about the sample application pop-up) 116
Map HLP: map set DFH0HLP (the help stub full screen pop-up) 117
Map AB: map set DFH0AB (abend handling) 118

iv CICS Transaction Server for VSE/ESA Sample Applications Guide

Part 2. FILEA sample applications . 119

Chapter 12. Installing and running the FILEA sample applications . . . 121
Installing the sample groups . 122
Language considerations . 122
Running the sample applications . 123

Chapter 13. FILEA sample application program descriptions 125

Chapter 14. FILEA sample application file description 131

Chapter 15. FILEA sample application BMS maps 133

Part 3. Intercommunication sample applications . 135

Chapter 16. The intercommunication sample applications 137
Intercommunication sample 1 – temporary storage queue transfer 138
Intercommunication sample 2 – remote file browse 140
Intercommunication sample 3 – remote record retrieval 142
Intercommunication sample 4 – CICS to CICS conversation 144

Part 4. BMS partition and transient data samples . 151

Chapter 17. The BMS partition samples . 153

Chapter 18. The transient data sample (DFH$TDWT) 155

Bibliography . 157
Books from VSE/ESA 2.4 base program libraries 158
Books from VSE/ESA 2.4 optional program libraries 160

Notices . 163
Trademarks and service marks . 164

Index . 165

 Contents v

vi CICS Transaction Server for VSE/ESA Sample Applications Guide

 Preface

What this book is about
This book is about the CICS sample application programs that are supplied to
assist you with application program development.

Who this book is for
This book is for those responsible for designing and writing CICS applications
programs and for those responsible for installing and running the supplied sample
applications.

What you need to know to understand this book
The book assumes that you are a CICS application programmer. You should be
familiar with the CICS application programming interface (API).

How to use this book
Each part of this book describes a separate sample. Read whichever part is
relevant to your current task.

 Copyright IBM Corp. 1989,1999 vii

Notes on terminology
The terms listed in Table 1 are commonly used in the CICS Transaction Server for
VSE/ESA Release 1 library. See the CICS Glossary for a comprehensive definition
of terminology.

Table 1 (Page 1 of 2). Commonly used words and abbreviations in CICS Transaction
Server for VSE/ESA Release 1

Term Definition (and abbreviation if
appropriate)

$(the dollar symbol) In the programming examples in this
book, the dollar symbol ($) is used as a
national currency symbol. In countries
where the dollar is not the national
currency, the local currency should be
used.

BSM BSM is used to indicate the basic security
management supplied as part of the
VSE/ESA product. It is
RACROUTE-compliant, and provides the
following functions:

 � Signon security
� Transaction attach security

C The C programming language

CICSplex A CICSplex consists of two or more
regions that are linked using CICS
intercommunication facilities. Typically, a
CICSplex has at least one
terminal-owning region (TOR), more than
one application-owning region (AOR), and
may have one or more regions that own
the resources accessed by the AORs

CICS Data Management Facility The new CICS Transaction Server for
VSE/ESA Release 1 facility to which all
statistics and monitoring data is written,
generally referred to as “DMF”

CICS/VSE The CICS product running under the
VSE/ESA operating system, frequently
referred to as simply “CICS”

COBOL The COBOL programming language

DB2 for VSE/ESA Database 2 for VSE/ESA which was
previously known as “SQL/DS”.

viii CICS Transaction Server for VSE/ESA Sample Applications Guide

Table 1 (Page 2 of 2). Commonly used words and abbreviations in CICS Transaction
Server for VSE/ESA Release 1

Term Definition (and abbreviation if
appropriate)

ESM ESM is used to indicate a
RACROUTE-compliant external security
manager that supports some or all of the
following functions:

 � Signon security
� Transaction attach security

 � Resource security
 � Command security
 � Non-terminal security
� Surrogate user security
� MRO/ISC security (MRO, LU6.1 or

LU6.2)
 � FEPI security.

FOR (file-owning region)—also known as
a DOR (data-owning region)

A CICS region whose primary purpose is
to manage VSAM and DAM files, and
VSAM data tables, through function
provided by the CICS file control program.

IBM C for VSE/ESA The Language Environment version of the
C programming language compiler.
Generally referred to as “C/VSE”.

IBM COBOL for VSE/ESA The Language Environment version of the
COBOL programming language compiler.
Generally referred to as “COBOL/VSE”.

IBM PL/I for VSE/ESA The Language Environment version of the
PL/I programming language compiler.
Generally referred to as “PL/I VSE”.

IBM Language Environment for VSE/ESA The common runtime interface for all
LE-conforming languages. Generally
referred to as “LE/VSE”.

PL/I The PL/I programming language

VSE/POWER Priority Output Writers Execution
processors and input Readers. The
VSE/ESA spooling subsystem which is
exploited by the report controller.

VSE/ESA System Authorization Facility The new VSE facility which enables the
new security mechanisms in CICS TS for
VSE/ESA R1, generally referred to as
“SAF”

VSE/ESA Central Functions component The new name for the VSE Advanced
Function (AF) component

VSE/VTAM “VTAM”

 Preface ix

x CICS Transaction Server for VSE/ESA Sample Applications Guide

 Chapter 1. Introduction

This book describes the sample applications supplied with CICS Transaction Server
for VSE/ESA Release 1. It is presented in three parts, each dealing with a different
type of application. These are:

1. A complete example of a CUA text level application

2. Four sets of command-level application programs that operate on the sample
VSAM file FILEA

3. A set of command-level application programs illustrating the use of CICS
intercommunication facilities.

The CUA text level application
CICS provides a sample application to demonstrate BMS support for the Common
User Access (CUA) interface. The application uses an action bar, with associated
pull-downs, pop-ups, and help panels. The application programs demonstrate how
to code COBOL/VSE programs to display, overlay, and remove CUA style windows.

The main objective is to show what can be implemented, and the amount of design
effort that is involved. You can take these applications and enhance them to meet
your own requirements by referring to the CUA Basic Interface Design Guide. You
can also use the samples to evaluate BMS support for the CUA interface.

The basic characteristics of the application are:

� It is written in COBOL/VSE
� It is pseudo-conversational.
� It uses minimum function BMS.
� It uses VSAM KSDS files.
� It uses communication areas and TS queues to maintain the status and

position of the user in the dialog.

The FILEA sample application programs
CICS provides four sets of command-level application programs that operate on the
sample VSAM file FILEA. There is one set for each of the four programming
languages supported, (Assembler, C, COBOL, and PL/I). Each set comprises the
following six programs:

 � Operator instruction
 � Inquiry/update
 � Browse
 � Order entry
� Order entry queue print
� Low balance report.

These programs show basic functions, such as inquire, browse, add, and update,
that can serve as a framework for your installation’s first programs. They were all
written prior to the publication of the Common User Access guidelines. This
application can also be used as an Installation Verification Procedure.

 Copyright IBM Corp. 1989,1999 1

The VSAM file, FILEA, consists of records containing details of individual customer
accounts.

The CICS intercommunication sample application programs
CICS provides four intercommunication sample application programs, written in
assembler language, that illustrate the use of distributed transaction processing and
asynchronous processing on APPC and LUTYPE6.1 links.

The four applications demonstrate the following functions:

1. Transferring a temporary storage queue from a local CICS system to a remote
CICS system, using distributed transaction processing and APPC protocols.

2. Browsing a remote file, using distributed transaction processing and APPC
protocols.

3. Retrieving a record from a remote temporary storage queue, using
asynchronous processing. This sample can be used with APPC and
LUTYPE6.1 links.

4. Enabling a CICS-to-remote LUTYPE6.1 system conversation. LUTYPE6.1 links
must be used for this sample.

2 CICS Transaction Server for VSE/ESA Sample Applications Guide

Part 1. The common user access interface (CUA) sample

This part of the book shows how you can design CUA conforming application
programs that communicate with nonprogrammable terminals using CICS basic
mapping support (BMS).

The CUA interface is fully described in:

� CUA Basic Interface Design Guide, SC26-4583.
� CUA Advanced Interface Design Reference, SC34-4290.

The CICS-supplied CUA text model application discussed in this book is based on
that part of the CUA guidelines that is applicable only to nonprogrammable
terminals, as described in the CUA Basic Interface Design Guide.

There are several solutions now available to the application programmer to enable
CICS programs to display information to the end user, using methods other than
BMS. The main objectives here, are to provide guidance on:

� Writing applications programs that conform to those parts of the CUA
guidelines that can be implemented in the CICS environment using BMS

� Designing applications in a modular fashion, with front-end and back-end
components to manage terminal and disk I/O respectively

� Designing applications that are portable between different CICS platforms, and
can exploit CICS multiregion operation (MRO) and ISC facilities.

This part of the book contains the following chapters:

� Chapter 2, “Introduction to the CUA guidelines” on page 5
� Chapter 3, “BMS and CUA panel displays” on page 11
� Chapter 4, “BMS and CUA panel entry and selection” on page 15
� Chapter 5, “BMS and CUA user dialogs” on page 19
� Chapter 6, “BMS application design for the CUA entry model” on page 27
� Chapter 7, “BMS application design for the CUA text model” on page 29
� Chapter 8, “Installing and running the CUA text model application” on page 55
� Chapter 9, “CUA text model program descriptions” on page 67
� Chapter 10, “CUA text model file and copybook descriptions” on page 97
� Chapter 11, “CUA text model BMS maps” on page 101.

The book attempts to avoid duplicating any information that is already contained in
the CUA Basic Interface Design Guide. Any CUA information that is repeated here
is for the purpose of making specific comments, or where recommendations are
made.

As the CUA rules and definitions are defined in the CUA Basic Interface Design
Guide, this book confines itself to offering the application designer guidance about
the practical techniques that can be used with BMS support, or within the
application program, to create consistent CUA applications.

 Copyright IBM Corp. 1989,1999 3

4 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 2. Introduction to the CUA guidelines

It is commonplace today to find users running programs on workstations, such as
personal computers (PCs), that exploit windowing. These take full advantage of
high performance graphical displays and their associated interface techniques.
When a PC user switches from a PC-based application program to a host-based
program, it is important that consistent user interface techniques apply across the
two different environments—PC and host. For example, the common use of
function keys and color, and panel layout standards, help the user to move easily
from one environment to the other. Part 1 of this book is intended to help you to
design applications to a consistent CUA standard at the CUA entry level1, and
applications at the text level1 that can contain action bars and associated pull-down
and pop-up windows. The CICS supplied CUA text model application discussed in
this book illustrates the common dialog flows that these CUA techniques entail.

To change an existing application to CUA standards means making a number of
adjustments to the application. For example, using an application action bar (AAB)
provides a fast path to many places in the application. Because this cannot be
done locally on a non-programmable terminal, the work must be done by the CICS
application program. In the text level environment, instead of BMS sending and
receiving a few modified fields to the same map, it may now have to send different
maps to manage the required screen presentation.

It must be stressed that although BMS has little built-in support for the CUA
interface, there is enough function in BMS to allow you to include all of the CUA
panel elements in your BMS maps. You can migrate your CICS applications to
CUA standards by using normal BMS coding practices. However, it is unlikely that
you can achieve all of the possible CUA requirements as long as the application
has to run on 3270-type terminals, because some of the more advanced CUA
functions are only suited to the personal computer with an all-points-addressable
screen and its capability of giving rapid locally-controlled interaction with the end
user.

You must evaluate the benefits of an improved end user interface against the
possible increases in processing time, line traffic, and development time for the
application code. When assessing the question of performance, you must take into
account not only specific transaction counts, but also the cost in terms of time and
money of retraining operators on applications that all work in different ways.

Systems Application Architecture
The Systems Application Architecture was announced by IBM in March 1987 and
CICS is a product conforming to these rules. The SAA architecture is a set of
software interfaces, conventions and protocols with an initial goal of providing a
framework for designing, developing, and using (or interacting with) applications
with cross-system consistency. This book is concerned only with the common user
access portion of SAA, and using the CUA interface in the CICS environment.

1 Entry level and text level are specific models defined in the CUA interface. For information about these CUA terms, see the CUA
Advanced Interface Design Reference and the CUA Basic Interface Design Guide.

 Copyright IBM Corp. 1989,1999 5

The CUA interface
CUA is a set of rules, guidelines, and options that, if adhered to, enable you to
provide applications with a consistent appearance to your end-users.

CUA distinguishes between programmable workstations, such as PCs, and
nonprogrammable workstations, such as host-attached 3270-type terminals. A PC
connected to a host using 3270 emulator programs is regarded as a
nonprogrammable terminal by an application such as CICS.

The CUA Advanced Interface Design Reference provides guidance for application
programmers who wish to incorporate CUA interface design into their applications.
The CUA Basic Interface Design Guide specifically addresses the use of CUA for
nonprogrammable terminals.

Within the host environment, CUA also distinguishes between entry level and text
(or character) level.

CUA consistency in CICS applications
For the purpose of this discussion, consistency means the CUA conventions for
common operations even though the underlying techniques might vary. For
example, there are several ways of saving data: on various types of local file
systems; on remote file servers; or on database servers. CUA guidelines state that
end-users at terminals should not be aware of these technical details. In this
example, the user is storing data but does not need to know how or where.

There are three main aspects of CUA consistency:

 1. Physical
 2. Syntactical
 3. Semantical.

Physical consistency applies to hardware; for example, keyboards having function
keys consistently labeled and positioned.

Syntactical consistency applies to the order and appearance of fields on the screen,
such as placing the title at the top, centered and correctly colored.

Semantical consistency refers to consistency in the use of words, such as the
meaning and use of cancel or exit commands.

Guidelines are published and examples provided for the application designer.
However, it is easy to assume that your situation is different from the norm, and
therefore not addressed by the guidelines. For example:

� Database applications don’t save data, they update it
� Some applications don’t print, they plot
� Some applications don’t delete, they clear.

Sometimes the distinctions are important because of the convention for the industry
for which the application was designed. However, quite often the terminology has
historical significance that is no longer relevant. The simplicity and consistency of
the CUA interface should appeal to new users who don’t know or don’t care about
the historical significance of CICS application terminology. On the other hand, the

6 CICS Transaction Server for VSE/ESA Sample Applications Guide

terminology cannot be ignored altogether because non-CUA users should be able
to switch to a CUA-based application without having to relearn everything.

The discussion that follows considers two categories of users:

1. Those who know about the CUA interface and:

� Know about CUA applications and their concepts
� Have no previous knowledge of CICS applications and their concepts.

2. Those who know about CICS and:

� Know about CICS applications and their concepts
� Have no previous knowledge of CUA applications and their concepts.

You may need to take these categories of user into account when redesigning
CICS applications. Is it a CICS application that has to be adapted to CUA, or a
CUA application that now has to use CICS? If it is the former, you tend to use
primarily CICS terminology, but adopt CUA terminology when it is convenient (in
effect, making only a token gesture to the use of CUA in your applications). If it is
the latter, you tend to keep to the CUA user’s view of the interface, and present the
CICS operations in a CUA manner.

If you emphasize CICS terminology:

� Users with previous CICS experience, but no CUA experience, have a better
chance of understanding the functions of the application.

If the terminal user exclusively uses CICS applications, the fact that it operates
under CUA guidelines is unimportant. This is a limited perspective, however,
for although it is true that some users may begin in this way, an objective of
CUA is to encourage the wide use of other applications. A CICS application
objective should be to have its operational model consistent with other CUA
applications.

� Users with CUA experience but no CICS experience could be put off by
CICS-based terminology. Their ability to apply previous CUA experience is
limited, as is their ability to use the application, because they must think about
the actions (for example, normal pull-down interactions) that are automatic in
other applications.

The CICS application biased in this way does little to prepare users for other CUA
applications.

On the other hand, if you emphasize CUA terminology:

� Users with previous CICS experience and no CUA experience might not
recognize a once-familiar application.

� Users with CUA experience and no CICS experience will feel more familiar with
the application because of their ability to recognize application actions from
previous CUA applications.

The CICS application biased in this way helps develop an expertise that can be
applied to other applications.

 Chapter 2. Introduction to the CUA guidelines 7

You should aim at developing applications that are biased towards the user who is
familiar with CUA because:

� The number of users who are accustomed to non-CICS CUA applications is
growing.

� The majority of applications will be consistent with one another if you follow the
guidelines.

� Cross-application consistency encourages users to try other applications.

� In time, the most successful applications will evolve to CUA standards and
these standards will continue to be adjusted to real world usage.

� Programming techniques developed for one CUA application can easily be
propagated to further CUA applications.

 Recommendation
When designing a CICS CUA text-level application, use the standard actions and
pull-downs wherever CUA concepts are applicable.

Provide the CUA standard actions in the pull-downs whenever possible, and
augment the titles when necessary. For example, if it is necessary for a user to
declare an intent, the intent should be included in a pull-down using phrases such
as “Open for Update” or “Open for Browse.”

Functions that are unique to the application but represent activities that are in the
same categories as the standard pull-downs, should be added in the relevant
places.

Basic mapping support
Basic mapping support (BMS) is the CICS interface that formats input and output
display data between CICS and an application program. It supports minimum
function character-mode non-programmable terminals, although BMS applications
can also run on PWSs under CICS OS/2.

BMS exists in three pregenerated versions: minimum, standard, and full. The
version used in a CICS region is determined by the BMS system initialization
parameter. Each version provides a different level of function, and consequently
uses different amounts of virtual storage, the minimum level of BMS using
considerably less than the other two levels.

In general, the guidance in this book covers what you can do using minimum BMS,
which supports the following:

� The SEND MAP command
� The RECEIVE MAP command
� The SEND CONTROL command
� Default and alternate screens

 � Extended attributes
� Map set suffixes
� Field and block data.

Minimum-level BMS supports all 3270-type displays except SNA character string
printers. There is little CUA advantage to be gained from any of the additional
facilities offered by the standard and full versions of BMS.

8 CICS Transaction Server for VSE/ESA Sample Applications Guide

The 3270 terminal devices (or 3270 PC emulators) without extended attribute
support do not conform to CUA. On the other hand, 3270 devices support some
functions such as partitions and partition scroll keys, validation attributes, and light
pen/cursor select fields, that are not part of CUA.

For information about BMS see the CICS Transaction Server for VSE/ESA
Application Programming Guide.

The advantages of CUA
A consistent interface benefits users and application designers, saving both time
and money.

Users benefit because they need less time to learn how to use an application and,
when using the application, take less time doing their work. An additional benefit to
users is reflected in their attitudes. A consistent interface reduces users’ frustration
levels, increases their feeling of accomplishment, and makes them feel more
comfortable with the system.

Application designers benefit because a common building-block approach can be
defined for an interface using standardized interface elements and interaction
techniques. The building blocks allow programmers to create and change
applications more easily and quickly. The same designs and techniques used
across many systems enable application designers to reuse BMS elements and
modules of associated application code.

Designing the user interface
The major parts of CUA interface design are panel design, entry and selection
design, and dialog design.

To give some idea of what is involved in using CUA using BMS, the different levels
of CUA implementation complexity are discussed here under four thresholds.

Threshold 1: This defines the straightforward changes that can be achieved by
re-designing the BMS maps and making minor changes to the dialog flow of the
program. This level is recommended for converting existing CICS applications
because it conforms to the CUA entry-level model and gives significant benefits to
the conventional data-entry type of operation.

Thresholds 2 and 3: These are more complex and suitable only for new or
significantly re-designed applications. These thresholds conform to the CUA
text-level model and give significant benefits to terminal users. For these, a
knowledge of object-action and action bar design is necessary.

Threshold 4: This lists CUA elements that are not recommended because the
effort will not justify the results.

The following is a summary of the CUA content of these thresholds, (where each
threshold includes the function of the lower threshold):

Threshold 1 (entry level — existing applications): Defines changes that are
straightforward to implement by re-designing BMS maps, and by making minor
changes to the dialog flow of the program. This involves:

 Chapter 2. Introduction to the CUA guidelines 9

� Using the required basic panel elements and formats
� Setting the required colors on initial presentation
� Handling simple list panels and elementary scrolling
� Moving any command and message areas to the correct places
� Changing the current function keys to use the required dialog definitions and

show them in the correct area
� Using full screen help.

Threshold 2 (text level): Defines changes that are more complex to implement.
There is an increase in the number of maps, and a corresponding increase in the
program flow path. This involves:

� Changing to an object-action approach.

� Incorporating action bars and their associated pull-downs.

� Maintaining underlying color consistency when a pull-down or pop-up is
present, and reflecting the correct selected emphasis.

� Using full dialog control. This includes protecting the user against the
consequences of using all inoperative function keys (for example, the “Clear”
and “PA” keys).

Threshold 3: Defines changes that are possible but complex to implement. It
involves:

� Incorporating pop-up windows
� Handling list panels with multiple actions against listed objects
� Implementing pop-up help panels on a field-context basis.

Threshold 4: Defines CUA items that are either impossible to implement, (because
of CICS, BMS, or 3270 limitations) or the effort involved does not justify the
potential benefits. It involves:

� User-customized options; for example, setting the display panel id on or off, or
using different displays of the function key line.

The CUA-preferred method is for an object-action approach as opposed to the
action-object method. The object-action method allows users first to select an
object from the panel body, and then to select an appropriate action from the action
bar or function key area to work on that object. This generally results in
fundamental application design changes to the panel layouts and the underlying
dialog control. The CUA text model application program described in this book
uses the object-action method.

10 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 3. BMS and CUA panel displays

This chapter covers the various CUA-defined panel elements that may be used in
BMS maps, and also the use of color and emphasis.

 Panel elements
The following panel elements, the rules for which are defined in the CUA Basic
Interface Design Guide, are covered here:

� Panel identifier (or id)
 � Panel title
� Panel area separators

 � Instructions
� Column headings and group headings

 � Field prompts
 � Descriptive text
 � Protected text.

You can define all of these using BMS.

 Panel identifier
BMS enables you to define fields that comply with the CUA rules for panel
identifiers. However, if you want the terminal user to select whether or not the
panel id is displayed, you must code the application program to test an appropriate
indicator, and change the 3270 attribute to hide the contents of the field
accordingly.

Recommendation
Code a panel id that is permanently displayed in a panel. If you want the users
to be able to turn the panel id off, they should have the option when they enter
an application for the first time, and their choice should then remain set for the
duration of the session.

Choose a panel id that relates to the transaction id, and which is therefore
meaningful to the application program. This assists the control of dialog flow
within the application.

 Panel title
BMS enables you to define fields that comply with the CUA rules for panel titles. It
is your responsibility to position the panel title field in the center of the panel. For
this purpose, you might find that a utility such as the IBM Screen Definition Facility
II (SDF II) makes screen definition (or painting) of your CUA/BMS maps easier than
using the CICS DFHMDF macros since SDF II supports centering.

Because variable window sizing is not possible using BMS maps, you do not have
to adjust the position of the title when a window size changes. For further
information see “Scrolling panel areas” on page 25.

You must ensure that if a map contains a variable length insert the application
program centers the insert as nearly as possible.

 Copyright IBM Corp. 1989,1999 11

Panel area separators
The CUA interface requires you to separate the action bars from the body of the
panel.

Recommendation
Use a line of hyphen (-) symbols as the separator between the action bar and
the main panel body, but in other places on the panel use blank lines. Define
the separator symbol line as a protected field, and part of the map definition.

 Instructions
BMS enables you to define fields that comply with the CUA rules for instructions.
Each line of instruction text is preceded by an attribute byte. BMS does not allow
fields to extend beyond the end of a line.

Recommendation
Define areas of instruction text as protected fields and part of the map
definition.

Column headings and group headings
BMS enables you to define fields that comply with the CUA rules for column and
group headings.

Recommendation
Define column and group headings as protected fields and part of the map
definition.

 Field prompts
BMS enables you to define fields that comply with the CUA rules for field prompts.

Recommendation
Define the field prompts as protected fields and part of the map definition. You
should also define any leading dots as part of the field prompt.

 Descriptive text
BMS enables you to define fields that comply with the CUA rules for descriptive
text.

Recommendation
Define areas of descriptive text as protected fields and part of the map
definition.

 Protected text
BMS enables you to define fields that comply with the CUA rules for protected text.

Recommendation
Define areas of protected text as protected fields and part of the map definition.

12 CICS Transaction Server for VSE/ESA Sample Applications Guide

Color and emphasis
The color and emphasis information in the CUA Basic Interface Design Guide
describes the default colors and emphasis techniques assigned to the panel areas
and elements. As users progress through a dialog with the application, the colors
and emphasis may change to show the current status of an element. As an
application programmer you are responsible for ensuring compliance with the color
and emphasis standards described in the CUA manuals.

It is usually possible to use a single BMS map, within a particular application
program, that supports both the monochrome and color environments. For
example:

� In CUA, unavailable choices in a selection list are colored blue for color
devices, or are indicated by placing an asterisk over the first character for
monochrome devices.

If you develop an application that is designed for 3270-type color devices, BMS will
filter out any unsupported attributes before transmitting the data stream to the
device. This means that panels will display on all devices, but may not fully comply
with CUA for monochrome devices (for example, the use of underscore attributes
for entry-field sizes have no effect on a 3277 terminal). However, you can specify
high intensity in conjunction with color attributes, so that the map is generally
suitable for use on both monochrome and color 3270-type terminals. When using a
7-color 3270-type terminal, the high-intensity attribute is ignored. Nevertheless, you
should use high intensity for all messages.

Recommendation
For BMS applications, you should assume that the target device supports color,
and set the color attribute as appropriate. However, in addition to setting color
attributes, you should also use the monochrome technique of displaying an
asterisk to indicate which choices are unavailable. Otherwise, the user of a
monochrome device will not be able to detect that a choice is invalid unless he
selects it and causes an error message to be returned.

Because the CICS supplied CUA text model application uses the recommended
CUA color emphasis and overwrites selection numbers with an asterisk, it is
suitable for both color and monochrome devices.

 Chapter 3. BMS and CUA panel displays 13

14 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 4. BMS and CUA panel entry and selection

The CUA Basic Interface Design Guide. explains selection fields and entry fields.
On a non-programmable terminal the cursor character generated by the terminal
hardware performs a dual function: (1) pointing to objects, and (2) indicating the
user’s current input position. Using the cursor keys, the cursor can be moved
anywhere on the screen, and not just to entry and selection fields. This adds to the
complexity of interpreting exactly the user’s action when a CUA-conforming BMS
map is returned to the application.

Moving the selection cursor
There are several situations where the position of the cursor on input is significant.
These include:

� Selecting an action from the action bar.

� Entering a choice in a selection field, when there is only one selection field in
the panel.

� Requesting contextual help. If the user presses the help key (F1) when the
cursor is within an entry field, the application should provide help that is specific
to the field. If the cursor is not within an input field then the application should
provide general, panel-related help.

� Selecting a function key by placing the cursor in the function key area and
pressing enter.

The cursor position is passed to the host as part of the inbound 3270 data stream,
and for CICS applications (using terminal control or BMS) it is available:

� As a fixed binary halfword value in the field EIBCPOSN. If your application
knows the format of the panel, it can use the EIBCPOSN value to determine in
which field the cursor was positioned. However, if the screen format is
changed at any time, the application program logic which identifies the cursor
position must also be changed. This technique means that programs have to
be changed even though the application data structure for a map does not
change.

� In a flag byte of the field in which the cursor was positioned. To use the flag
byte for this purpose, you must specify the cursor location option
(CURSLOC=YES), in the BMS map definition, using either the DFHMSD
macro, the DFHMDI macro, or both, depending on your requirements.

(See the CICS Transaction Server for VSE/ESA Application Programming
Guide for more information about the flag byte which BMS uses to indicate to
your application the field in which the cursor was located.)

Detecting the cursor on action bars: Under CUA rules, the names for action bar
options are largely predetermined, and should have a single blank character before
and after each. However, if your maps are translated into different languages, the
lengths of action names are almost certain to be different for each language. If the
lengths of the action names in your maps change as a result of translation, their
position on the screen will also change, and if you are using the EIBCPOSN value
to detect the selected action bar choice, you must change your application program

 Copyright IBM Corp. 1989,1999 15

accordingly. This is not the case if you are using the CURSLOC option, which
provides program independence from such map changes.

Testing for the cursor position
A MAPFAIL condition results in a zero value for the cursor position in EIBCPOSN.
This can be caused by, for example, repeated use of the CLEAR key, and your
application program should test for the possible use of the CLEAR key before
making tests on the cursor value.

If

� You are using the cursor flag option, and
� The cursor is positioned in one field of the map, and
� None of the fields contains data

BMS sets the cursor flag for the appropriate field and all the fields in the application
data structure are set to null. In this case, the MAPFAIL condition is not raised.
The unmapped data stream is not available to your application program unless it
issues an EXEC CICS RECEIVE request.

Other selection considerations
The 3270 architecture also provides a means of selecting a field using the
cursor-select key (CURSOR SEL), which provides the same function as the light
pen. BMS supports the use of the cursor-select key, and if you want to use this
method of field selection, you must ensure that the field is defined as detectable
when you specify the BMS map. (See the CICS Transaction Server for VSE/ESA
Application Programming Guide for more information about defining fields to use
the cursor-select key.)

In the case of a non-programmable terminal you must define the fields that
represent the available choices in an auto-select field as unprotected, to allow use
of the tab keys to skip from one choice to another. This allows the user to type
over the predefined choices, even though the application does not expect, and
should ignore, any data entered by such overtyping. If the user overtypes selection
data, and the panel remains displayed, the original choice data will not (necessarily)
be redisplayed.

 Selection fields
CICS does not preclude the use of CUA facilities such as icons, checkboxes, and
radio buttons (provided that your map is able to return, and the application can
correctly interpret, the correct cursor position). Some 3270-type terminals have the
ability to display graphics, and make these CUA techniques feasible. However, the
practical considerations and cost of sending complex graphics data over a typical
telecommunication network rule these out. For this reason, the CICS sample
applications support only character mode, and the selection choices are
straightforward text.

The sample applications use entry fields for selecting choices from a list. In a list
offering a single choice, there is one entry field, to the left of the first choice in the
list, in which the user can enter the selection number. In a list offering multiple
choices, there is a one-character entry field to the left of each available choice, in
which the user can enter a selection character.

16 CICS Transaction Server for VSE/ESA Sample Applications Guide

The use of capital letters is a matter for individual choice.

Scrollable selection fields and lists
Scrollable selection fields and lists can be implemented under BMS, but you must
balance the cost, in terms of application code and performance overhead, against
the potential value to be gained in terms of usability.

Selection element emphasis
The selection cursor of a non-programmable terminal is the text cursor, and you
cannot control its appearance by your application code.

Your application must ensure that the selection characters are redisplayed with the
correct emphasis if the panel remains in view after the user has selected a choice.

Unavailable emphasis is a de-emphasized color, for color character devices, and an
asterisk overlaying the first character of the choice text, for monochrome character
devices. Your applications need to be sensitive to the device type to determine
how to mark invalid choices. If a user makes an invalid choice, your application
should display a message either on a predefined message line or in a pop-up. This
means that you should give a field name in your BMS map to any selection fields
that are potentially not available.

Selection field initial conditions
There are no specific CUA rules about setting initial or default values for selection
fields, so you can choose whether or not to do so.

 Entry fields
In CUA-based BMS applications you will frequently send maps without the ERASE
option on the SEND command. This means that any entry fields in panels that you
send to a terminal, must be filled with blanks to ensure that they correctly overlay
any existing maps, and do not leave old data displayed unintentionally. When
receiving data from a map, your application program should treat a blank in an
entry field as the equivalent of a null field.

Entry field appearance
You should use underscore attributes in BMS maps to indicate the extent of entry
fields. This requires terminals that support extended-highlighting attributes
(terminals without extended-attribute support do not conform to CUA requirements).
If a terminal does not support extended highlighting, you can obtain the effect of the
underscore attribute by filling entry fields with underscore characters. However, this
may not be acceptable because insert mode is then not readily available.

You can implement scrollable entry fields under BMS but this requires considerable
effort in programming, and increased overhead in terms of performance. Therefore
the use of scrollable entry fields is not recommended.

 Chapter 4. BMS and CUA panel entry and selection 17

 Action lists
BMS allows the definition of fields that comply with the rules for action lists, but you
must write the code to support them.

18 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 5. BMS and CUA user dialogs

This chapter discusses how you handle CUA user dialogs using BMS. The
following topics are discussed:

 � Using prompts
� Using action bars and pull-downs
� Using pull-downs and pop-ups
� Using message areas
� Using command areas
� Using function keys
� The use of scrolling.

 Prompt
The CUA Basic Interface Design Guide discusses the use of prompts in CUA
dialogs to assist terminal users in completing entry fields. Prompts can save time
for users and reduce the risk of typing errors. CUA specifies that anything other
than very short prompts (which can usually appear as descriptive text) should
appear in pop-up windows.

There are no BMS restrictions in implementing CUA prompts, because all the code
to handle prompts must be in the application program.

Action bar and pull-downs
The CUA Basic Interface Design Guide discusses the requirements for an action
bar. Although simple applications can be developed using the CUA entry level
model (that is, without an action bar), to implement a CUA text level model, an
action bar must be used.

Use of the action bar and pull-downs
A terminal user can select an action from an action bar by tabbing to the action
field and pressing ENTER, or by setting the cursor anywhere within the action
name and pressing ENTER.

Using BMS, your application can either:

� Receive the cursor position as a halfword binary value, in the field EIBCPOSN,
or

� Receive the cursor position using the cursor location option.

The application then has to determine which action the user selected.

BMS action bar fields must be defined as unprotected, to enable the user to select
an action by means of the tab key. However, this means that the user could
overtype, and even completely erase, the action bar options. The application must
be capable of restoring these correctly on the next interaction. Also, using action
bars with associated pull-down windows adds complexity to the application code
and increases the inbound and outbound data flow to and from the host.

 Copyright IBM Corp. 1989,1999 19

Action bar layout
An example of a standard action bar layout is shown in Figure 1

File Edit View Options Help

Attribute Bytes

Blanks

Figure 1. An example of a standard action bar

The CUA requirements for action bar attribute handling are supported by BMS.
CUA demands a solid bar separator for various purposes, and solid lines and
corners for the borders of pull-down windows. Because neither the minus (−) nor
the underscore (_) symbols produce a solid line when repeated, and because there
are no horizontal or vertical corner-frame characters available that display on all
3270 devices, you must decide for yourself what gives the best presentation to the
user, within the CUA guidelines.

Recommendation
If you know that your application is only available on a particular set of
terminals that support a character set with proper box edges, corners, and
intersections, you can code the application to use the character set as defined
by CUA. However, if the application has to support a mixture of terminals,
some of which have the correct character set and some which don’t, use the
second of the CUA-preferred borders for your pull-downs; that is:

� Use the minus (−) for horizontal lines
� Use the vertical bar (|) for vertical lines
� Use the period (.) for the top corners
� Use the apostrophe (’) for the bottom corners.

Action bar content
CUA recommends that you should use the standard actions if at all possible.
These are:

File Edit View Options Help

When planning an action bar for a CICS application, you may be tempted to keep
to terminology with which the users are familiar. However, you should make every
effort to adopt the standard CUA action bar, because that is what the users are
most likely to come across in other CUA applications. If your application does not
need to use a particular action, omit that action's name from the action bar and
space out the remaining action names so as to leave only the attribute byte and a
single blank between each.

20 CICS Transaction Server for VSE/ESA Sample Applications Guide

Action bar selected emphasis
If you design an application that supports pull-downs, you must ensure that the
selected action on the action bar is emphasized while its pull-down is displayed.
To do this, your application must be able to set the color and extended highlighting
attributes appropriately. This means you must define the action fields in the BMS
map as modifiable (by the application program).

How users interact with the action bar and pull-downs
When a user selects an action from the action bar the application should display a
pull-down in which further actions are presented as a list. (A common mistake is to
trigger actions directly from the action bar, rather than from actions listed on the
resulting pull-down.) The contents of the action bar pull-down are in the form of a
list, which is usually a numbered, single-choice selection list, but can be a
multiple-choice selection list.

The entry field in the pull-down must be aligned directly under the blank character
which precedes the selected action’s name. See Figure 2.

File Edit View Options Help

_ 1. Help for help...
2. Extended help...
3. Keys help...
4. Help index...
5. Tutorial...
6. About...

Figure 2. Example of a pull-down panel

To enable users to switch the cursor from the body of a panel to the action bar, the
function key F10 (Actions) must act as a toggle switch; therefore, the application
must detect the switch-to-action-bar key, save the current cursor position, and place
the cursor on the first action in the action bar. If, having responded to F10 in this
way, the application detects F10 again, it must restore the cursor to the saved
position in the panel body. Furthermore, if the user makes a selection from the
action bar that results in a pull-down, and then presses F10, the application must
clear the pull-down and still restore the cursor to the saved position in the panel
body (not to the action bar).

Rules for user interaction using a keyboard
The 3270 hardware determines how a user may move the cursor to the action bar.
In many cases a tab (or backtab) key produces the quickest result, and therefore is
the method most likely to be used. (Using F10 requires an interaction with the
host.) For this reason the application should not be designed to rely only on an
F10 interrupt; it must be able to determine the cursor position whenever an
attention key is pressed.

 Chapter 5. BMS and CUA user dialogs 21

Pull-downs and pop-ups
The CUA Basic Interface Design Guide discusses the location, layout, and content
of pull-down and pop-up windows.

You should not attempt to develop a text-level application using pop-up windows
without carefully analyzing the amount of effort involved, and considering the
overhead incurred in terms of extra line traffic. Although BMS does not support
true windows, it can be used to simulate windowing, and so give the application a
consistent CUA appearance. However, you cannot prevent the user from moving
the cursor outside the boundary of a BMS-generated pop-up window.

Neither CICS nor BMS provides a windowing environment and therefore cannot
support secondary windows. BMS can be used only to provide pop-up window
support if the application saves the screen contents from each transmission.
Pop-up window support means supporting pop-up windows (with borders) which
overlay only part of the main screen, and disable any entry fields in the main panel.
This will increase path lengths and storage requirements for the application.

You could consider a limited form of pop-up for help information, where the help
window overlays the main map, but your application program must still be capable
of re-displaying the original map when the help pop-up is canceled.

An example of this can be seen in “Contextual help” on page 45.

Pull-down and pop-up techniques using BMS
In the discussion that follows, the term base map means a normal BMS full-screen
map.

If you decide to use simulated windows, you can achieve this in one of two ways,
which are referred to as the canned map and the overlay map techniques. Using
BMS, you handle pull-down and pop-up windows in the same way.

Canned map
With this technique, you copy the base map and define the window as an
integral part of it. This may give easier control, but it increases the number and
complexity of the maps, and means that for any subsequent changes to the
base, every version must be updated.

Overlay map
With this technique, the map consists only of the window and its contents. The
map must be coded completely, with any entry or unprotected fields space-filled
to prevent underlying information in the base remaining visible. For example,
you must initialize single byte stop fields with a space. To display the overlay
window, send the overlay map and omit the ERASE option. This method
minimizes the number of maps, and eases maintenance, but it makes control of
the underlying panel more complex, because the base map remains on the
screen. Although the base map remains on the screen, it does not exist to the
application, and any RECEIVE MAP command operates on the window map.
However, you cannot prevent the user from moving the cursor to fields in the
base map and attempting to enter data that is not available to your application.

To the terminal user, these two techniques produce the same effect.

22 CICS Transaction Server for VSE/ESA Sample Applications Guide

Recommendation
Use the overlay technique, as demonstrated in the CICS sample CUA
programs.

In normal operation there will be occasions when the user’s terminal displays
several maps; for example, the base panel, a pull-down, and perhaps a pop-up.
If the application keeps a record of these maps, it can handle functions such as
“clear” by refreshing the screen and resending the component maps.

Use temporary storage queues to keep track of the panels for re-building maps.

 Message area
Usually CICS applications communicate with users by sending messages.
Generally, these messages present users with unsolicited information —
information that you, the application designer or programmer, believe users need to
know.

Types of messages
The CUA Basic Interface Design Guide defines three types of messages, defined
according to their severity, and what users do to remove the message. The
message types are:

1. Information . These messages tell users that a computer function is being
performed or has completed normally.

2. Warning . These messages tell users that a potentially unwanted situation
could occur. Users do not need to correct the situation in order to continue,
although they may need to take corrective action later to avoid errors.

3. Action . These messages tell users that an exception condition has occurred.
Users must take some action to correct the situation. Action messages are
used in situations ranging from minor application-related conditions (that
prevent users continuing with the current dialog), to system-related conditions
(that prevent users from continuing to work with any application in the system).

There is no automatic generation of the required attributes for the different
categories of message. The application must set the attribute characters for the
fields containing its own message lines.

The above mentioned messages are application messages. Any CICS-generated
messages overwrite part of the screen, but you can control this to some extent by
specifying the error last line diagnostic option in the terminal’s typeterm definition.
Because CICS messages are generally action messages (as defined by CUA) you
must also set the error color option to red.

 Message location
Messages are normally displayed in a message area in the base map rather than in
pop-ups, because of the overhead associated with pop-up support. This means
that scrolling the message area is less of a problem than for some of the other
panel areas, because the message area will consist of one or more single field
lines (that is, all message lines are formatted identically). You must ensure that the
application program is able to determine when scroll keys are used, whilst the
cursor is positioned in the message area, and update the contents of the message
area appropriately.

 Chapter 5. BMS and CUA user dialogs 23

 Message content
Information messages should contain text only and should be displayed in message
lines in the main panel.

Warning messages should contain text only, and should be accompanied by an
audible “beep,” which can be achieved by specifying the alarm option on the BMS
SEND command.

 Message removal
The application must ensure that the message text is removed from the screen
when appropriate, as defined by the CUA rules, and that help information and
scrolling are dealt with.

Recommendation
Define all maps with a fixed message line. This includes coding pull-downs
and pop-ups with a single message line on the same line as that on a base
map. When a base map is displayed, the message line can be filled in the
normal way. When a pull-down or pop-up is displayed over a base map, (and
the base map has ceased to exist as far as the program is concerned), the
message line from the pop-up or pull-down will overlay the message line of the
base map.

 Audio interaction
You can sound the terminal audio warning (known as the alarm or beep) by issuing
an EXEC CICS SEND CONTROL ALARM.

 Copyright information
You can use BMS for CUA copyright information requirements by sending a
message to the applications primary map.

 Command area
The CUA Basic Interface Design Guide discusses the requirement for command
areas. These can be used in an application to allow direct entry of commands, in
addition to using action bars and pull-downs.

You can decide on the location and layout of the command area, because BMS
does not distinguish the command area from any other fields in the map.

If you want to support a retrieve last command key, this must be implemented in
your application code.

Because BMS does not allow a field to “wrap around” from the end of one line to
the start of the next, a two-line command area would be complicated to implement.
The application would have to join the two fields together before interpreting the
command, and the result of this may not be as desired; for example, delete- and
insert-key functions would not apply to the whole command area.

Recommendation
Use a fixed location, single-line, command area, rather than a pop-up, and
ensure that it is always visible in panels which support the command area.

24 CICS Transaction Server for VSE/ESA Sample Applications Guide

The fixed command area should be at the bottom of the panel, just above the
function key area (if present). Do not provide a user option to change the
location of the command line.

Function key area
The CUA Basic Interface Design Guide discusses the function key area. This is
the area at the bottom of a panel that lists available actions and their physical key
assignments. Some of the actions are common dialog actions because they have
common meanings in all applications.

Some other actions that appear in the function key area may be unique to the
individual application.

BMS supports twenty-four function keys. The attention identifier (AID) associated
with each key is available to application programs in the CICS-supplied copy-book,
DFHAID. If you decide that the user may select function keys by cursor position,
as well as by pressing the appropriate function key, then your application must
detect the cursor position in one of the two methods described on page 15. You
are responsible for the layout of the function key area, but you should observe the
CUA guidelines.

Recommendation
If you know that the whole terminal environment supports 24 function keys then
design your application to use all 24, but in a mixed 12- and 24-key
environment, design for 12 keys only.

Scrolling panel areas
The CUA Basic Interface Design Guide defines scrolling for a number of situations,
and BMS supports all of them.

The scrollable area consists of a number of identically formatted lines (for example,
help information formatted as single field lines, or tables with data in columns). If
all the scrollable data is fixed, you can define the data as a series of pop-ups.
However, if the data is variable and is derived from the processing of your
application, you can define a single BMS map that contains both scrollable and
non-scrollable panel areas. Your application must update the scrollable part of the
panel, and any scrolling information in the non-scrollable part (such as the number
of lines displayed and the total number to be displayed). Display the data by
issuing a SEND MAP DATAONLY command to update the panel. In this way, with
a single map, you can scroll any number of lines, according to the needs of your
application.

Recommendation
To minimize coding when building a scrollable panel for variable data, redefine
the working storage output data area as an array. If you do this, you must
ensure that when you make any changes to the map you also change the array
and recompile the application. For an example of this technique, see the
copybook DFH0BLST, where LSTY redefines LSTI.

 Chapter 5. BMS and CUA user dialogs 25

26 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 6. BMS application design for the CUA entry model

Many CICS BMS applications tend to be data-entry intensive, with the only
available actions being enter data, or browse. These types of application are well
suited for a CUA entry model, because with limited actions available, they maximize
the resources of the host system by minimizing the number of host interrupts.

Using minimum function BMS, you can use all of the CUA entry model
requirements as described in the CUA Basic Interface Design Guide. Note,
however, that although the entry model example described there shows a pop-up
for the prompt function, pop-ups for dialogs are optional and a full screen could
have been used.

Recommendation
Use the entry model in all cases where a major redesign of the application is
not required.

Do not use pop-ups in an entry-level application.

 Copyright IBM Corp. 1989,1999 27

28 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 7. BMS application design for the CUA text model

To illustrate the recommendations discussed in the preceding chapters, CICS
provides a sample application to demonstrate BMS support for CUA. The BMS
support for CUA in this application uses object-action programs with action bars,
pull-downs, and pop-ups. The application programs demonstrate how to code
COBOL/VSE programs to display, overlay, and remove CUA style windows. They
demonstrate most of the CUA panel display combinations, together with the rebuild
and removal combinations that occur in a real application.

The CUA text model application programs are based on the threshold 3 level
discussed in “Designing the user interface” on page 9, and develop the use of CUA
principles to browse, add, update, and delete records in a customer file.

The application performs elementary error checking to show where this can occur,
but the main objective is to show what can be implemented, and the amount of
design effort that is involved. All menu choices are activated although not all the
routes through the sample are complete (for example, the print option is stubbed).
This is because the missing routes would simply duplicate CUA features and
program functions demonstrated elsewhere in the application. Another reason for
omitting some routes is that the application could not be supplied in a state ready
for running because of dependencies such as printer ids. However, you can take
this model and enhance it to meet your own requirements by referring to the CUA
Basic Interface Design Guide. You can also use it to evaluate BMS support for
CUA and the recommendations made earlier in this book.

The CUA text model application programs present a CUA appearance and use a
common action bar with associated pull-downs, pop-ups, and help panels, all
working in a similar way to that which you would experience in CUA interface
techniques used in any other application.

This chapter describes the sample application in three main sections, giving firstly
an explanation of some design decisions used in the sample, followed by two
overviews of the application. The first overview is from the user’s perspective, the
second from the viewpoint of an application designer. The three sections are:

1. Some application design considerations
2. The end-user’s view
3. The designer’s view.

Some application design considerations
The CUA text model application uses an object-action approach throughout,
together with standard CUA terminology where appropriate. There is only one
object, which is the customer data file. Our user scenario assumes that the
terminal end-user has already selected the customer file from a list of other objects,
and is now ready to “open” the file to do one or more of the following:

� Browse the contents
� Update one or more customer records
� Add new customer records
� Delete customer records
� Print customer information

 Copyright IBM Corp. 1989,1999 29

� Select help panels.

There are many ways in which this application could be written, using CUA
guidelines, to achieve the same end user function. The following design
considerations apply to this sample application:

� The dialog flow is not optimized for any particular user.

� The application closely follows the CUA sample text subset example in the
CUA Basic Interface Design Guide, and adapted to the application database
requirements.

� The application uses a common action bar for all panels. It uses only the file
and help actions because the application does not allow different views, or user
options.

� To avoid illogical user situations, some actions in the file pull-down are
automatically deactivated at some points, especially in the action list
processing.

� The application uses mixed case for all data.

� The ENTER key acts as an accelerator key to take the user directly from the
primary panel to the open browse pop-up.

� The F3 function key exits from the primary panel to CICS, but returns the user
to the primary panel from any other panel in the application.

� The application does not use a command line, but reserves line 23 in every
map. You can use this line as a command line if you want to enhance the
sample in this way.

� The F1 help function displays contextual help in a pop-up to the right-hand side
of each panel. The application fills the help pop-up with relevant information
from a help file.

� Elementary record locking is done to prevent two terminals updating the same
record. This is achieved by writing the terminal ID to the last 4 bytes of the
record while it is in use.

List processing design
There are many application decisions which you must make about how to process
an action list.

The CUA text model application uses the following techniques:

� When the list panel is displayed, the user continues the dialog by typing single
character action codes against the customer records of interest. The letters ‘B’,
‘U’, and ‘D’ are valid in this application.

� There is a ‘+’ field that shows there is more data to be seen if the user presses
F8. The application shows this field as ‘- +’ if scrolling is possible in both
directions.

� When actions are typed against several records, an action list is generated and
stored in a TS queue (LISTtrmid). When the user presses ENTER, this list is
processed sequentially.

� If a displayed list is not what the user wants, the user can “step back” to the
initial open dialog using the F12 (cancel) function, and modify the original
selection criteria.

30 CICS Transaction Server for VSE/ESA Sample Applications Guide

� When the user opens the file and is viewing a list, the application deactivates
the ‘open’ action in the file pull-down.

� Any use of F3 (exit) cancels the action list processing.

� Any user branch to a base panel other than those being processed by an
action list, result in the termination of list processing.

� While processing an action list, navigation forward from one full panel to the
next will be done by F5=Next (thus leaving the Enter key for panel verification
purposes), navigation backward will be done by F12, namely, Cancel back
through panels processed by an action list.

� The application dynamically changes function keys in list panels and only
displays them when they are available to the user. The application does not
close up the blank space left by function keys that are not available on a
particular display. (An alternative is to superimpose an asterisk (*) over the first
character of an unusable function key and leave it displayed; the programming
technique is similar, and it is a matter of choice.)

The list processing actions described above are shown in Figure 3 on page 32.

 Chapter 7. BMS application design for the CUA text model 31

Contents of the file pull- Cancel
down in panels processed List
from an action list. Processing

File

LST 1. New NEW
*. Open for Browse

b --- --- ------- --------- *. Open for Update
u --- --- ------- --------- *. Save
u --- --- ------- --------- *. Save as DELETE
b --- --- ------- --------- 6. Delete

7. Print
8. Exit

Enter (Process List)

File

b BRW 1. New NEW
r *. Open for Browse
o *. Open for Update
w *. Save
s *. Save as DELETE
e 6. Delete

7. Print
8. Exit

F3

F12 F5 File

u UPD 1. New NEW
p *. Open for Browse
d *. Open for Update
a 4. Save
t 5. Save as DELETE
e 6. Delete

7. Print
8. Exit

F3

F12 F5 File

u UPD 1. New NEW
p *. Open for Browse
d *. Open for Update
a 4. Save
t 5. Save as DELETE
e 6. Delete

7. Print
8. Exit

F3

F12 F5 File

b BRW 1. New NEW
r *. Open for Browse
o *. Open for Update
w *. Save
s *. Save as DELETE
e 6. Delete

7. Print
8. Exit

F3

Figure 3. The CUA sample application text model list processing

32 CICS Transaction Server for VSE/ESA Sample Applications Guide

The end-user’s view
This section describes the CUA text model application from the end-user viewpoint,
giving an overview of the user interface and interactions.

This is a basic application, designed to convey the general flavor of the CUA text
subset. It is not feasible to show all the combinations of user interactions, and
therefore only some of the flows through the application have been selected to
illustrate the style of the user interface, and the main user interactions. Where
applicable, the overview includes brief notes on significant CUA points, to highlight
the techniques mentioned earlier in this book.

If you have access to the CUA text model application you can try the programs for
yourself, as well as exploring paths that are not described here. Running the
application should show the maps in the CUA colors. The BMS maps are correctly
coded for CUA, but they might be displayed differently if you are running under an
emulator.

Throughout this description, the panels are referred to by their title and the panel
identifier, which appears in the top left-hand corner.

 Starting
Assuming that you have a CICS region running, the application is correctly
installed, and you have a clear screen in front of you, type in the transaction code
AC20. Note that although all the programs have their own transaction codes, AC20
is the only valid entry, because all the other programs run pseudo-conversationally
from this.

Panel T1 is the primary panel that the application displays.

à ð
 File Help
 --

 T1 Customer Data File

 Mððð1 (C) Copyright IBM Corporation 1991. All rights reserved.

 F1=Help F3=Exit F1ð=Actions

á ñ

 Chapter 7. BMS application design for the CUA text model 33

 Notes
In a production environment, users would typically select the customer data file
option (panel T1) from an initial menu that a controlling application displays when
users sign on. The CUA text model application design assumes that this is the
case, and T1 is the primary menu for this application.

The normal user interaction is to switch to the file action in the action bar by either
pressing F10 or moving the cursor with the tab or cursor keys.

If the user presses an incorrect key, for example F7, then an error message
appears on the message line.

For the purpose of this overview, assume the user presses F10 to switch the cursor
to the file action in the action bar, followed by the ENTER key to display the file
pull-down.

 CUA considerations

� This is the base panel.

� The separator line is drawn with hyphens.

� The copyright message is displayed only once, the first time the application
is invoked.

� There are no special application or BMS considerations in displaying this
panel.

Choosing what to do in the file pull-down
The application displays the file pull-down illustrated here in response to the “File”
action selected in panel T1.

à ð
 File Help
 .------------------------------.--

 | 2 1. New | omer Data File

 | 2. Open for Browse... |

 | 3. Open for Update... |

 | \. Save |

 | \. Save as... |

 | 6. Delete |

 | 7. Print... |

 | 8. Exit F3 |
 '------------------------------'

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

34 CICS Transaction Server for VSE/ESA Sample Applications Guide

Notes on the file pull-down
Selections 4 and 5 are not available because there is nothing to save at this point.

For the purpose of this overview, assume the user wants to open the customer
data file to see a specific customer record. The user types a 2 in the selection
entry field (the ellipses indicate that a pop-up continuation dialog follows), and
presses the ENTER key.

 CUA considerations

� The T1 panel is still the base panel.

� The pull-down box outline is drawn by hyphens, vertical bars, periods, and
apostrophes.

� The file pull-down panel (FPD) is overlaid on the base panel without the
base panel being erased.

� The copyright message is removed.

� The application highlights and protects the file action.

� The application de-emphasizes the ‘save’ and ‘save as’ actions and
replaces the associated selection numbers with asterisks.

� The application must rebuild the base panel and the pull-down if the user
presses the CLEAR key.

The open pop-up with specific search criteria
The application displays the Open for Browse pop-up (OPN) in response to the 2
entered in the selection entry field in the file pull-down on the previous panel.

à ð
 File Help
 --

T1 Customer Data File

 .--.

| OPN Open for Browse |

 | |

| Type a Customer surname or a range of account |

| numbers. The surname must be typed with an |

| initial capital, and an \ may follow the name |

| as a wild card. Then press Enter. |

 | |

| Customer Name . Mulligan |

| Range start . . ________ |

| Range stop . . ________ |

 | |

 | F1=Help F12=Cancel |

 '--'

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

 Chapter 7. BMS application design for the CUA text model 35

Notes on the open pop-up with specific search criteria
The user can also reach the open pop-up panel (OPN) by using ENTER as an
accelerator key from the primary panel T1.

If any input data is incorrect the application displays a message using the single
message line, and emphasizes the appropriate input fields.

For the purpose of this overview, assume the user types a correct entry of
“Mulligan” in the customer name field and presses ENTER.

Alternatively, the user could:

� Enter a specific account number on the range start line, in which case the
application would display the browse panel (BRW).

� Enter a start and stop range of account numbers, in which case the application
would display a list panel (LST) similar to the partial search case discussed
later.

 CUA considerations

� The T1 panel is still the base panel, and is rebuilt to remove the file
pull-down overlay.

� The use of a pop-up here is an application choice. From a CUA viewpoint it
is equally acceptable to display a full screen panel. The pop-up is a small
map overlaid (without erase) on the T1 panel.

� Only the function keys inside the pop-up are valid.

� The application must rebuild the base panel and the pop-up if the user
presses the CLEAR key.

36 CICS Transaction Server for VSE/ESA Sample Applications Guide

Browse customer panel
The application displays the Browse Customer panel in response to the specific
customer name entered in the open pop-up on the previous panel. This is shown
in the following sample screen.

à ð
 File Help

 BRW Browse Customer

 Customer details

Account Number : ðððððð1ð
Surname : Mulligan
First Name . . : Gerald
Address : 23, St. James Street

 Town : Portsmouth
 County : Hampshire
 Postcode . . . : PO56 3PO

Credit Limit . : 35ðð
 Account Status : A
 Comments . . . : Good Customer

 Sometimes pays on time
 Not reliable

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

Notes on the browse customer panel
Because the user entered a specific name for which a record existed in the file, the
application displays the customer details.

From this panel F3 returns the user to the primary panel T1 while F12 returns to
the open pop-up, OPN.

This overview continues by assuming the user presses F12 again to return to the
previous panel (OPN), and changes the search criteria to ‘Thom*’, using the
asterisk to represent any trailing letters.

 CUA considerations

� This is now the base panel.

� The function key line is dynamically changed to allow for F5=Next.
Because this is not operational when the browse panel (BRW) is viewed
directly from the open pop-up (OPN), space is reserved for it since it would
be shown when this panel is viewed from an action list.

 Chapter 7. BMS application design for the CUA text model 37

The open pop-up with general search criteria
This overview now returns to the Open for Browse panel, in response to F12 on the
previous panel.

à ð
 File Help
 --

T1 Customer Data File

 .--.

| OPN Open for Browse |

 | |

| Type a Customer surname or a range of account |

| numbers. The surname must be typed with an |

| initial capital, and an \ may follow the name |

| as a wild card. Then press Enter. |

 | |

| Customer Name . Thom\ |

| Range start . . ________ |

| Range stop . . ________ |

 | |

 | F1=Help F12=Cancel |

 '--'

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

Notes on the open pop-up with general search criteria
This overview continues by assuming the user enters a partial name, using an
asterisk (*) to represent any letters, then presses ENTER.

 CUA considerations

� The panel is handled the same as for the specific entry case, except that a
list will result should multiple records qualify. If only one record is found,
the result is identical to the specific case.

38 CICS Transaction Server for VSE/ESA Sample Applications Guide

The list panel
The application displays the Customer List (LST0) panel in response to the partial
name entered in the customer name field in the open pop-up.

à ð
 File Help

 LSTð Customer List

Type one or more action codes then press Enter.

 B=Browse U=Update D=Delete

 Items 1 to 4 of 4

 Action Account No Surname First Name

b ðððððð3ð Thomas Alan
u ððððððð5 Thompson Chris
u ððððððð6 Thompson Cindy
b ððððððð7 Thomson Simon

 F1=Help F3=Exit F8=Fwd F1ð=Actions F12=Cancel

á ñ

Notes on the list panel
In response to the partial name with an asterisk representing any final letter, more
than one record met the qualifying criteria; therefore the application displays a list
(LST0) panel with any qualifying records. Note that the panel shown here
represents what will be displayed with the supplied file data. If anyone has made
any changes, additions, or deletions to the data file then the actual number of
records you see displayed may vary. You can also reach a similar list panel by
entering both a range start and a range stop on the OPN panel.

The actions of browse, update and delete are available from the list by typing a
single character action code against the required customer record.

When you select a number of records, the application queues them ready for
display, and you can work on them sequentially. In this application, F3 terminates
the current display, any queued records waiting for display, and returns you to the
primary T1 panel. Using F3 for this purpose is an application choice.

This overview continues by assuming the user types actions of b, u, u, and b in the
action fields of the first four records displayed. The dialog from this point follows
that shown in Figure 3 on page 32. Full screen customer details panels are shown
according to the order of the action list generated.

 Chapter 7. BMS application design for the CUA text model 39

 CUA considerations

� This is now the base panel.

� The function key line is a variable because, in this case, F7=Bkwd is not
available when the list is first displayed, but is after you scroll the list
forward.

� List panels are the most complex in application programming terms,
because of the amount of data you must keep available for re-display
purposes when users scroll forward and backward. However, this has
nothing to do with CUA – list panel handling is just as complex in non-CUA
applications.

� When the action list is completed, the action characters are replaced by
asterisks (*) to show the actions were processed, and any messages are
placed on the line adjacent to the record they reference.

Browse customer panel from an action list
The application displays the Browse Customer (BRW) panel in response to the ‘b’
entered against the first customer in the list of the previous panel.

à ð
 File Help

 BRW Browse Customer

 Customer details

Account Number : ðððððð3ð
Surname : Thomas
First Name . . : Alan
Address : 16, Roman Road

 Town : Streatham Vale
 County : London
 Postcode . . . : SW16

Credit Limit . : 5ððð
 Account Status : A
 Comments . . . : Good Customer

 Pays on time
 Reliable

 F1=Help F3=Exit F5=Next F1ð=Actions F12=Cancel

á ñ

Notes on the browse customer panel from an action list
From this panel:

� F3 returns you directly to the primary panel (T1)

� F12 returns you to the list in the previous panel (LST0) cancelling any further
action list processing.

ENTER is not a valid key to page forward through the action list.

Assume the user continues with the action list and presses F5=Next, to continue.

40 CICS Transaction Server for VSE/ESA Sample Applications Guide

 CUA considerations

� This is now the base panel.

� F5=Next is now available because this instance of the browse panel is for a
customer selected from an action list, unlike the previous browse example
which was displayed for a specific customer selected by name in the open
pop-up (OPN). (See pages 35 and 37).

� The use of F5 for Next in the dialog flow is an application choice. Although
F5 is assigned to Refresh by CUA, refresh is not used in this application
and we are therefore free to use the key for our own purposes.

Update customer panel from an action list
After the browse panel from the action list, the application displays the Update
Customer (UPD) panel in response to the ‘u’ entered against the second customer
in the list panel (shown earlier).

à ð
 File Help

 UPD Update Customer

 Update the details then press Enter to validate the data. Then use the

 Save option in the File pull-down to store it.

Account Number : ððððððð5
Surname Thompson
First Name . . . Chris
Address 25, Sutton Drive

 Town Bighton
 County Hampshire
 Postcode SO24 9SO

Credit Limit . . 6ððð
 Account Status . C
 Comments Bad customer

Sometimes pays on time
 Not reliable

 F1=Help F3=Exit F5=Next F1ð=Actions F12=Cancel

á ñ

Notes on the update customer panel from an action list
From this panel:

� F3 returns you directly to the primary panel (T1)

� F12 returns you to the previous panel in the action list.

The ENTER key is now available for verification of any data that the user changes
in the panel.

This overview continues by assuming the user changes the second comment to
“Getting better all the time,” then presses the ENTER key.

 Chapter 7. BMS application design for the CUA text model 41

 CUA considerations

� This is now the base panel.

� If the user wants to view any previous panels, F12=Cancel steps back
through the previous action list panels.

Update customer panel after verification
The application responds to the ENTER key following the change by overlaying a
message on the panel as shown in the following sample screen.

à ð
 File Help

 UPD Update Customer

 Update the details then press Enter to validate the data. Then use the

 Save option in the File pull-down to store it.

Account Number : ððððððð5
Surname Thompson
First Name . . . Chris
Address 25, Sutton Drive

 Town Bighton
 County Hampshire
 Postcode SO24 9SO

Credit Limit . . 6ððð
 Account Status . C
 Comments Bad Customer

Getting better all the time
 Not reliable

 Mðð14 Data validated - use Save in the File pull-down, or F12 to Cancel.

 F1=Help F3=Exit F5=Next F1ð=Actions F12=Cancel

á ñ

Notes on the customer update panel after verification
When the data is validated, the user presses F10, which moves the cursor to the
file action, then presses the ENTER key.

This overview continues by assuming the user presses F10, then the ENTER key
to obtain the file pull-down.

 CUA considerations

� There are no CUA or BMS considerations in displaying this panel.

42 CICS Transaction Server for VSE/ESA Sample Applications Guide

Saving a customer record
The application responds to the file action request by overlaying the file pull-down
on the update customer panel.

à ð
 File Help
 .------------------------------.---

 | 4 1. New | date Customer

 | \. Open for Browse... |

 | \. Open for Update... | er to validate the data. Then use

 | 4. Save | to store it.

 | 5. Save as... |

 | 6. Delete |

 | 7. Print... | _
 | 8. Exit... F3 | _
 '------------------------------' ive

 Town Bighton
 County Hampshire
 Postcode SO24 9SO

Credit Limit . . 6ððð
 Account Status . C
 Comments Good Account

 Getting better all the time
 Not reliable

 F1=Help F3=Exit F4=Previous F5=Next F1ð=Actions F12=Cancel

á ñ

Notes on saving a customer record
To save the data, the user types 4 in the selection entry field and presses the
ENTER key. Although not shown in this overview, the application responds by
displaying a message indicating that the data is saved. The dialog with the action
list continues when the user presses F5 to display the next record. The user then
steps through the remaining actions.

 CUA considerations

� The program controls the dialog according to the diagram shown in
Figure 3 on page 32. Note that the application must be written to control
any situations that might occur if the user selects items from pull-downs
while they are still processing an action list.

� The “Open for Browse” and “Open for Update” actions are deactivated
because the file is already open.

� The “Save” and “Save As” actions are re-activated and the numbers
restored.

� The user may try to save from the pull-down before the data in the
underlying update panel has been verified. The application must take steps
to prevent this.

This concludes the general overview of the sample application. The following text
explains various other panels available and the “stubbed” exits that would require
further expansion in a fully-functioning application.

 Chapter 7. BMS application design for the CUA text model 43

Choosing what to do in the help pull-down
The application displays the help pull-down (HPD), if the user selects it from the
Action Bar.

à ð
 File Help
 ------.-------------------------.---

T1 | 1 1. Help for help... | omer Data File
| 2. Extended help... |
| 3. Keys Help... |

| 4. Help Index... |

| 5. Tutorial... |

| 6. About... |

 '-------------------------'

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

Notes on the help pull-down
If the user selects the help pull-down (HPD), various options are available. Only
the “6. About” option works in this application, the remaining options 1 to 5 all
leading to a common help panel (HLP). A real application would need to provide
the correct links to appropriate help panels as required.

For the purpose of this discussion, assume the user types a 1 in the selection entry
field.

 CUA considerations

� The help pull-down (HPD) is handled exactly the same as the file pull-down
(FPD) except that it leads to a common program stub, which is used for
options 1 to 5.

The help stub
The application displays the help stub panel in response to the user selecting 1 on
the help pull-down.

44 CICS Transaction Server for VSE/ESA Sample Applications Guide

à ð
 .--.

 | HLP Help |

 | |

 | An application would implement help according to its requirements. The |

 | option you selected in the Help pull-down was followed by ellipses and |

 | therefore the user would expect a pop-up to follow. This panel is treated |

 | as a full screen pop-up for the purposes of the sample program. The |

 | following specific pop-ups could be implemented: |

 | |

 | 1. Help for Help - This information tells users how to get help and how |

 | to use the help facilities |

 | 2. Extended Help - This information tells users about the tasks that |

 | can be performed in the application panel |

 | 3. Keys Help - A list of the application keys and their assignments |

 | 4. Help Index - A list of the help information available for the |

 | application |

 | 5. Tutorial - Access to a tutorial if the application provides one |

 | 6. About - Access to the copyright and ownership information |

 | |

 | F12=Cancel |

 '--'

á ñ

Notes on the help stub
This is the help stub panel (HLP). The only possible user response in this sample
application is F12 (Cancel).

 CUA considerations

� This is an example of a full screen pop-up. Any underlying panels are not
rebuilt if Clear is pressed because they will never be seen.

 Contextual help

à ð
 File Help
 .------------------------------.---

 | _ 1. New | Data File .------------------------------.

 | 2. Open for Browse... | | Help: File Selection |

 | 3. Open for Update... | | |

 | \. Save | | 1=Create a New customer. |

 | \. Save as... | | 2=Browse one or more |

 | 6. Delete | | customer details. |

 | 7. Print... | | 3=Update one or more |

 | 8. Exit F3 | | customer details. |

 '------------------------------' | 4=Save New or Updated |

 | customer details. |

| 5=Save an existing customer |

| detail as a new account. |

| 6=Delete a customer detail. |

| 7=Print as required. |

 | |

 | |

 | F12=Cancel |

 '------------------------------'

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

 Chapter 7. BMS application design for the CUA text model 45

Notes on contextual help
This is just one example of contextual help. The user presses F1 with the cursor
positioned on the entry field of the file pull-down. The help pop-up (HPOP) appears
on the right-hand side of the panel and it contains help material, taken from the
help file, that is relevant to the cursor position.

 CUA considerations

� The help pop-up (HPOP) is handled the same as any other pop-up. When
the pop-up is removed (by either F12 or accidental Clear), the application
must rebuild any maps below it (in this example, T1 and FPD, the file
pull-down).

The print stub

à ð
 File Help

T1 Customer Data File

 .---.

 | PRT Print Options |

 | |

| An application would now typically ask for |

| any print requirements such as the printer |

| destination, number of copies, paper type, |

| paper size, etc. |

 | |

| Since installations will have different print |

| requirements, no attempt has been made to |

| continue the print function beyond this point. |

 | |

 | F12=Cancel |

 '---'

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

Notes on the print stub
This is just an example of a print pop-up (PRT). To get here, the user types a 7 in
the entry field of the file pull-down (FPD) and the pop-up is overlaid over any base
panel.

Like the help function in this sample application, the print panel is handled by a
print stub program. The only possible user response is F12 (Cancel).

 CUA considerations

� The print pop-up (PRT) is handled the same as any other pop-up. When
the pop-up is removed (by either F12 or accidental clear), the application
must rebuild any maps below it, (in this example, T1).

46 CICS Transaction Server for VSE/ESA Sample Applications Guide

This completes the user’s view of the CUA text model application. There are many
routes and interactions, not all of which can be covered here. The programmer is
recommended to explore the application and the CUA interactions by installing it on
a CICS system. Although it is not possible for a 3270-type terminal to behave
exactly like a PS/2 workstation, a CUA text subset application such as this should
present few surprises to an end-user familiar with a CUA interface.

The designer’s view
The design of the CUA text model application is based on a structured, modular
method to make efficient use of code, and to avoid duplication wherever possible.
Common programs are established wherever they can be used as sub-routines (for
example, to display and process the pull-downs from the action bar). Some are
common external routines (for example, the overlay, file handling, and error
procedures). You can apply much of this coding technique to any new CUA
application.

If the application needs to rebuild a panel, it transfers control to the program that
displayed the panel initially.

The sample application ‘help’ function is coded in a common program, and can
operate on a field-detectable basis. Although it only operates in some areas of the
application, the design enables you to adapt it for use on any panel.

All file I/O is handled by common programs, which perform the user database
accesses. The main program calls the file I/O programs as required. The purpose
of having all the file I/O in special programs is to separate the dialog and display
code from the database access code. There are two file I/O modules: (1) for the
main customer data file, and (2) for the help file. Each of these files can be defined
to CICS as either local or remote files, but usually you would define the help file as
local.

 Chapter 7. BMS application design for the CUA text model 47

The transactions and programs correspond to the panels as follows:

Panel processing is dependent on indicators set in either the communication area
or temporary storage queues. Because of the number of paths a user can take
through the application, it is not possible to generate a simple step-by-step flow
diagram to show all the program routes. Typical user routes only are shown, and
the diagram in Figure 4 on page 50 shows the general relationship of the individual
programs that make up this sample application.

Table 2. Summary of the CUA text sample programs

Transid Program Map id Mapset Description

AC20 DFH0VT1 T1 DFH0T1 Primary panel

AC21 DFH0VOL FPD DFH0FPD Pull-down

HPD DFH0HPD Pull-down

AC22 DFH0VOPN OPN DFH0OPN Open

AC23 DFH0VLST LST DFH0LST List

AC24 DFH0VNEW NEW DFH0NEW New

AC25 DFH0VBRW BRW DFH0BRW Browse

AC26 DFH0VUPD UPD DFH0UPD Update

AC27 DFH0VDEL DEL DFH0DEL Delete

AC28 DFH0VPRT PRT DFH0PRT Print

AC29 Not Used N/A N/A N/A

AC2A DFH0VSAS SAS DFH0SAS Save As

AC2B Not used N/A N/A N/A

AC2C DFH0VHLP HLP DFH0HLP Help stub

AC2D DFH0VAB AB DFH0AB Abend

AC2E DFH0VHP HPOP DFH0HP Help pop-up

AC2F DFH0VABT ABT DFH0ABT About

N/A DFH0VRIO N/A N/A Remote file I/O
(customer data)

N/A DFH0VLIO N/A N/A Local file I/O (help
file)

N/A DFH0VTBL N/A N/A Table router

DELQ DFH0VDQ N/A N/A Delete TS queues

 Resource usage
Based on the threshold levels described under “Designing the user interface” on
page 9, it is possible to give some general guidance on some aspects of
application design that you should consider in relation to existing installation
standards and practices. It is important to remember that many of the factors
affecting efficiency are caused by application design choices, and not because of
CUA guidelines. For example, within the CUA text model application, should the
end user be allowed to use a function key as a means of a fast path between
browse and update? The application logic may become more complex and add to
the overhead, but give greater freedom for the end user. The choice depends upon

48 CICS Transaction Server for VSE/ESA Sample Applications Guide

the end-user, or installation, requirements. Using entry level, for new or existing
applications, probably involves little or no overhead.

Using text level, and giving the user flexibility to use the action bar as a fast-path,
and using pop-ups, you need to use temporary storage to “remember” panels and
paths through the user’s dialog.

From such information the application must be able to re-display the previous
sequence of panels, including any user data. You, as the application designer,
might want to build in some restriction on data and panel recall, since the user
could choose a sequence of actions that would keep on using temporary storage.
For example, in action lists, if the user were to repeatedly use the file pull-down to
branch around a list and open further lists (without returning to the main menu), an
increasing amount of temporary storage would be used to record the flow.
Temporary Storage is deleted as soon as it is no longer required. Previously
created TS queue entries that become redundant are reused.

As soon as an action bar is present, an associated “pull-down” window is required
to proceed further. This can be regarded as a miniature full screen panel which will
probably increase the level of dialog management required. In the environment of
a non-programmable terminal you must consider the additional data flow between
the host system and the terminals; in particular, if the terminals are connected
remotely then the additional response times may be unacceptable. Balanced
against this must be the added usability gained by the use of action bars, function
keys, colors, and so on, that relate consistently to specific functions, and the
increased flexibility given to the overall system design.

Pop-ups are similar to pull-downs. Where a pop-up or pull-down needs to be
removed from the user display in order to complete the required screen image, the
underlying base panel must be refreshed before any subsequently required
pop-ups/pull-downs can be displayed.

For example, the CUA text model application requests customer names or numbers
by use of an “open” pop-up over the primary panel, which appears after the user
selects it from the “file” pull-down. To clear the file pull-down, the primary panel
must be re-sent, followed by the open pop-up.

 Chapter 7. BMS application design for the CUA text model 49

 Program relationships
The application has a primary base panel (T1) which can route (via pop-up and
utility programs) to five further base panels as shown in Figure 4.

CICS (AC20)

(AC20)
PRIMARY
DFH0VT1

(AC23) (AC24) (AC25) (AC26) (AC27)
LIST NEW BROWSE UPDATE DELETE
DFH0VLST DFH0VNEW DFH0VBRW DFH0VUPD DFH0VDEL

Any of the above base panels can have pop-ups superimposed to allow the
user to move between them.
The program controlling the Action Bar pull-down displays is:

(AC21)
PULL-DOWN
DFH0VOL

The programs controlling the pop-up displays are:

(AC22) (AC28) (AC2A) (AC2C) (AC2E) (AC2F)
OPEN PRINT SAVEAS HELP HELP POP ABOUT
DFH0VOPN DFH0VPRT DFH0VSAS DFH0VHLP DFH0VHP DFH0VABT

The routing between the programs and the actual file I/O is controlled by
the following utility programs:

TABLE (AC2D) REMOTE LOCAL
ROUTER ABEND FILE I/O FILE I/O
DFH0VTBL DFH0VAB DFH0VRIO DFH0VLIO

Figure 4. CUA text model application program relationships

Notes:

1. DFH0VTBL, DFH0VOL, DFH0VAB, DFH0VRIO, and DFH0VLIO are common
programs that could be initiated from any panel directly.

2. DFH0VRIO is a common program that performs all the reading and writing to
the customer data file, which can be situated remotely.

3. DFH0VLIO is a common program that performs all the reading and writing to
the help file, which can be situated locally.

 Program structure
The general structure of the CUA text model application programs is as follows:

Initiation
Initiation is performed from an initial transaction, AC20, which displays the
primary (T1) panel. All other programs are invoked either directly as a result of
a CICS RETURN, an XCTL (transfer of control), a LINK, or a dynamic COBOL
call from another program. Indicators in the communication area are tested,

50 CICS Transaction Server for VSE/ESA Sample Applications Guide

giving the program knowledge of how it was called, and also the type of map
being received. Different processing is applied to base, pop-up, or pull-down
maps, allowing for alternative function keys to be activated, and attributes to be
reset in the panel displayed.

Process
If entry is via an XCTL – process XCTL valid function keys.

If entry is from CICS – receive map and process valid function keys.

Process the ENTER key according to user input, cursor position, or indicators
in the communications area and/or temporary storage (TS) queues.

Process invalid function keys.

Note: The CLEAR key requires specific handling since there is no way to
prevent it clearing a 3270 screen.

Routing
The multiple routes available through the application and the control of the
action bar pull-down selections are set out in a three-dimensional table array,
which is accessed via a table program. This enables the program routing to be
determined according to the action, base panel, and selection. If multiple
objects were required, a fourth dimension could be added as a higher level of
this table. As there is no direct routing control in any module, existing modules
are not affected if new ones are added.

Termination
Display appropriate panel, return next transaction code, or CALL/XCTL as
required.

Commarea
The communication area is used during processing to maintain status
indicators, counters, and so on. It contains fields to indicate:

� * The pull-down displayed indicator
� * The base panel displayed indicator
� * The pop-up panel displayed indicator
� * The action selected indicator
� * The browse/update action mode
� * The panel type
� * The TS queue counter for referencing panel images
� * The TS queue counter for referencing stored records
� * The current entry in the record index
� * The program entry state indicator
� The CICS response field
� The call number for error processing
� The help field key
� The I/O call type
� The I/O call return code
� * The counter to process the record index
� The pull-down selection number
� The next program name to pass control to
� The action index storage field
� The base index storage field
� The selection index storage field
� The search level required indicator
� The action not available indicator (returned from search)

 Chapter 7. BMS application design for the CUA text model 51

� The selection not available indicator (returned from search)
� The selections processed counter field
� The option selected indicator field
� The customer Account Number
� The range start number
� The range stop number
� The customer name
� The last item read from the list TS queue
� * The number of list panel items selected for processing
� * The number of list panel items processed
� * The list TS queue item number processed by the selected actions
� * The list panel line number processed by the selected actions
� The total number of items that met the search criteria
� The contextual help cursor position hold field
� The list panel displayed/processing indicator
� The panel confirm/validated indicator
� The terminal ID hold area, for message build processing only.

Note: In the CUA text model application, the communication area size is 200
bytes but 61 bytes of this is filler for expansion purposes. Only the
items marked with * are unique to the CUA requirements.

TS queues
The CUA text model application uses temporary storage queues during
processing to pass data between transactions/programs. (TRMID is the
terminal address from where the transaction was started.)

The following temporary storage queues are used:

� A panel queue (PANLtrmid). This queue stores the BMS output panel
images.

� A record-hold TS queue (RECDtrmid). The first item of this TS queue is
reserved to keep track of where the user actually is in the application. It is
this item which indexes the PANL and RECD TS queues. There may be
up to 50 records in this entry, which stores the following data:

Panel name (N)
The panel name can be a base panel name or a selection number
indicating a pull-down selection.

Panel type (T)
If a pop-up is displayed, the panel type is:

‘b’ for base panel
‘f’ for full screen pop-up, or
‘p’ for pop-up.

Action (A)
The action is the action which was selected from the action bar prior to
this base or pop-up panel.

Panel item number (I)
The panel item number is a pointer to the entry in the PANL TS queue
that contains the panel image.

52 CICS Transaction Server for VSE/ESA Sample Applications Guide

Record item number (R)
The record item number is a pointer to the entry in the RECD TS
queue which contains the record relating to this panel image.

The item numbers following the first entry contain the actual customer
file records for processing by the application.

The structure and relationship of the PANL and RECD TS queues is shown
in Figure 5.

Name
Item 1 Panel Image

Type Item 2 Panel Image

Item 3 Panel Image
Action

Item n Panel Image

Image Item # PANLtrmid TSQ

Record Item #

Item 1 N T A I R N T A I R N T A I R n

Item 2 Record data
Up to

Item 3 Record data 50 entries

Item 4 Record data

Item n Record data

RECDtrmid TSQ

Figure 5. Structure and relationship of PANL and RECD TS queues

 Chapter 7. BMS application design for the CUA text model 53

� A customer data file I/O queue (LISTtrmid). This queue is only written if
more than one record meets the search criteria. This list queue only
contains those customer details that are necessary to format the list panel,
that is, account number, surname, and first name. This optimizes
temporary storage usage.

� A help file I/O queue (HELPtrmid). This queue is written when the help file
is read to supply contextual help to fill the help pop-up.

Cleaning up TS queues
When the application runs normally, any TS queues are purged correctly. If further
development work is done on this application and an abend occurs during testing,
there can be a small nuisance factor when using CEBR to access and purge TS
queues generated relevant to the Terminal Net-ID. For this reason there is a
temporary storage clean-up transaction supplied, called DELQ. It purges all the
temporary storage queues used by the application and frees any records that are
held for update.

The program associated with this transaction is called DFH0VDQ.

54 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 8. Installing and running the CUA text model
application

This chapter describes what you need to do to install and run the CUA text model
application programs. There are four sections in this chapter:

1. Generating the BMS maps
2. Translating, compiling, and link-editing the application programs
3. Creating the VSAM files
4. Installing and running the application on your CICS region, including modifying

CICS-supplied resource definitions to allow mixed-case input.

Generating the BMS maps
The CUA text model application programs, maps, and copy books are all in
PRD1.BASE. Before you can translate and compile the programs, you must first
generate the maps. You need to generate all the maps shown in Table 3. Note
that the member names are of the form DFH0Mxxx, but the corresponding mapsets
are named DFH0xxx. This permits you to write each symbolic description map
(copy book) back to the same library as the source member.

Table 3. Summary of CUA sample application maps

Map / Map set Member Description

AB / DFH0AB DFH0MAB General purpose map for abend handling

ABT / DFH0ABT DFH0MABT Information about the sample application

BRW / DFH0BRW DFH0MBRW Browse customer details

DEL / DFH0DEL DFH0MDEL Delete a customer record

FPD / DFH0FPD DFH0MFPD File pull-down

HLP / DFH0HLP DFH0MHLP The help (stub) panel

HP / DFH0HP DFH0MHP Contextual help panel

HPD / DFH0HPD DFH0MHPD Help pull-down

LST / DFH0LST DFH0MLST List processing panel

NEW / DFH0NEW DFH0MNEW New customer record

OPN / DFH0OPN DFH0MOPN File-open panel

PRT / DFH0PRT DFH0MPRT Print panel

SAS / DFH0SAS DFH0MSAS Save changed customer record

T1 / DFH0T1 DFH0MT1 Primary panel to sample application

UPD / DFH0UPD DFH0MUPD Update and validate customer details

Translating, compiling, and link-editing the application programs
When you have successfully generated the maps into suitable libraries, you can
translate and compile the application programs. The programs are listed in Table 2
on page 48.

 Copyright IBM Corp. 1989,1999 55

Creating the VSAM files
The CUA text model application requires two VSAM key-sequenced data sets; (1)
the customer details file, and (2) the help file. You should define these to VSAM
and load them with the CICS-supplied initial data. To define and initialize these
data sets, run the jobs DFH0DCUS and DFH0DHLP. These jobs can be found in
PRD1.BASE and must be tailored to suit your CICS environment.

// JOB DEFCUASF CREATE VSAM CUA SAMPLE CLUSTER

/\ \===\

/\ \ This job prepares the CUA Sample VSAM files. \

/\ \ \

/\ \ It issues IDCAMS DELETE commands to delete the ALTERNATEINDEX \

/\ \ and CLUSTER definitions for the VSAM files to make sure they \

/\ \ do not exist before issuing an IDCAMS DEFINE CLUSTER to define \

/\ \ the VSAM data file. \

/\ \ \

/\ \ It then executes the DFH$CUAD phase to load the defined data. \

/\ \ The data is read from 8ð byte SYSIPT records and the data from \

/\ \ three records are combined to produce a single 227 byte output \

/\ \ record which is written to the VSAM file. To identify the three \

/\ \ input records, the first byte is a either 1, 2 or 3 which \

/\ \ defines which part of the output record the data is for. \

/\ \ If the input record's sequence numbers are validated to ensure \

/\ \ that each output record is made up of 3 input records. If the \

/\ \ sequence is broken, the input records are ignored up to the \

/\ \ next input record with its first byte set to 1. \

/\ \ \

/\ \ The next step issues an IDCAMS DEFINE ALTERNATEINDEX to define \

/\ \ the Alternative Index VSAM entry. This is then linked to the \

/\ \ data file (base cluster) with the IDCAMS DEFINE PATH command. \

/\ \ \

/\ \ Finally the Alternate Index is built by issuing the IDCAMS \

/\ \ BLDINDEX command and the results listed by the IDCAMS LISTCAT \

/\ \ command. \

/\ \ \

/\ \ Note: You must change all occurences of the following fields: \

/\ \ \

/\ \ user_catalog \

/\ \ volume \

/\ \===\

/\

Figure 6 (Part 1 of 5). Job to define and initialize the customer details file

56 CICS Transaction Server for VSE/ESA Sample Applications Guide

/\ \===\

/\ \ Delete the VSAM entries for the Alternate Index and Cluster if \

/\ \ they already exist and then define the Cluster. \

/\ \===\

// EXEC IDCAMS,SIZE=AUTO

 DELETE -

 (DFHCTPTH) -

 PATH -

 CATALOG(user_catalog)

 DELETE -

 (CICS41ð.SAMPLE.DFHðFAI) -

 ALTERNATEINDEX -

 CATALOG(user_catalog)

 DELETE -

 (CICS41ð.SAMPLE.DFHðFUS) -

 CLUSTER -

 CATALOG(user_catalog)

 DEFINE CLUSTER -

 (NAME(CICS41ð.SAMPLE.DFHðFUS) -

 INDEXED -

TRACKS (2 1) -

 BUFFERSPACE(4ð96) -

 RECORDSIZE(227 227) -

 KEYS(8 ð) -

 SHAREOPTIONS(2) -

 VOLUMES(volume)) -

 DATA -

 (NAME(CICS41ð.SAMPLE.DFHðFUS.DATA)) -

 INDEX -

 (NAME(CICS41ð.SAMPLE.DFHðFUS.INDEX)) -

 CATALOG(user_catalog)

/\

/\ \===\

/\ \ Now load the VSAM Cluster with data

/\ \===\

// DLBL USERCAT,'user_catalog',,VSAM

// DLBL CUADATA,'CICS41ð.SAMPLE.DFHðFUS',,VSAM,CAT=USERCAT

// LIBDEF \,SEARCH=(PRD1.BASE,PRD2.SCEEBASE)

// EXEC DFH$CUAD

1ððððððð1Gardner Derek 1, Main Street P

2ortsmouth Hampshire PO12 3CT 35ððAGood Customer

3 Sometimes eats Oranges for lunch

1ððððððð2Graham Eric 2, West Way W

2ickham Hampshire SO31 7HI 3ðððAGood Customer

3 Pays on time Reliable

1ððððððð3George Harry 2718 Anderson Mill Drive O

2wlesbury Hampshire SO67 6RM 4ðððBPoor Customer

3 Sometimes pays on time Not reliable

1ððððððð4Gregory Mike 378, Algarve Terrace F

2our Marks Hampshire SO99 4IR 5ðððAGood Customer

3 Pays on time Reliable

Figure 6 (Part 2 of 5). Job to define and initialize the customer details file

 Chapter 8. Installing and running the CUA text model application 57

1ððððððð5Thompson Chris 25, Sutton Drive B

2ighton Hampshire SO24 9SO 6ðððCBad Customer

3 Sometimes pays on time Not reliable

1ððððððð6Thompson Cindy 67, Shawford Close B

2ramdean Hampshire SO15 9TB 7ðððAGood Customer

3 Pays on time Reliable

1ððððððð7Thomson Simon 35, Appledown Crescent H

2ambledon Hampshire SO24 9HI 8ðððAGood Customer

3 Pays on time Reliable

1ððððððð8Tomson Roger 19, Park Road W

2inchester Hampshire SO24 9ON 1ðððAGood Customer

3 Pays on time Reliable

1ððððððð9Robinson Tim Houseboat 3, Hamble Marina H

2amble Hampshire SO87 2MS 1ðððCBad Customer

3 Never pays on time Very unreliable

1ðððððð1ðMulligan Gerald 23, St.James Street P

2ortsmouth Hampshire PO56 3PO 35ððAGood Customer

3 Sometimes pays on time Not reliable

1ðððððð11Graham Ernest 2, West Way W

2inchester Hampshire SO65 7SN 3ðððAGood Customer

3 Pays on time Reliable

1ðððððð12George William 217, Central Avenue A

2lton Hampshire SO84 6OW 4ðððBPoor Customer

3 Sometimes pays on time Not reliable

1ðððððð13Beckett Roger 36, Orchard Grove R

2opley Hampshire SO93 4NR 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð14Spencer Fred 12A, Hobart Street W

2est Meon Hampshire PO35 2IO 35ððAGood Customer

3 Sometimes eats Scones for tea

1ðððððð15Graham Chris Surridge Farm L

2ymington Hampshire BM46 2ST 3ðððAGood Customer

3 Pays on time Reliable

1ðððððð16Williams Fiona 21, Chalgrove Road C

2hilbolton Hampshire SOð5 1GE 4ðððBPoor Customer

3 Sometimes pays on time Not reliable

1ðððððð17Zaventem Oscar 14, East Street A

2lresford Hampshire SO94 ðRT 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð18Williams Lynda 54, London Road B

2ishops Sutton Hampshire SO11 ðEH 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð19Woolliams Stephanie Lower Wield Farm G

2undleton Hampshire SO32 4AI 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð2ðWestaway Tony 87, Lanham Close N

2orthington Hampshire SO99 6TS 5ðððAGood Customer

3 Pays on time Reliable

Figure 6 (Part 3 of 5). Job to define and initialize the customer details file

58 CICS Transaction Server for VSE/ESA Sample Applications Guide

1ðððððð21Becker John 46, Orchard Grove G

2uildford Surrey SO93 4II 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð22Sparks Philip 167, Hobart Street D

2orking Surrey PO35 2NN 35ððAGood Customer

3 Sometimes eats Bread for supper

1ðððððð23Grant Colin 97, The Rise G

2atwick Surrey BM46 2HH 3ðððAGood Customer

3 Pays on time Reliable

1ðððððð24Wilton Frances 51, Chiltern Avenue C

2ranleigh Surrey SOð5 1UU 4ðððBPoor Customer

3 Sometimes pays on time Not reliable

1ðððððð25Ziegler Jan 77, West Street M

2itcham Surrey SO94 ðRR 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð26Winston Hilda 54, Mitcham Road C

2roydon Surrey SO11 ðSS 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð27Williamson Stanley 34, Nursery Road H

2ackbridge Surrey SO32 4LL 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð28West Jim 22, Vermont Close C

2arshalton Surrey SO99 6EE 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð29Fox Tom 61, Windermere Road S

2treatham Vale London SO99 6YY 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð3ðThomas Alan 16, Roman Road S

2treatham Vale London SW16 5ðððAGood Customer

3 Pays on time Reliable

1ðððððð99Test99 99

2 ZTest record only

3

1ððððð999Test999 999

2 ZTest record only

3

1ðððð9999Test9999 9999

2 ZTest record only

3

1ððð99999Test99999 99999

2 ZTest record only

3

1ðð999999Test999999 999999

2 ZTest record only

3

1ð9999999Test9999999 9999999

2 ZTest record only

3

199999999ABCDEFGHIJKLMNOPQRSTAbcdefghijklmnopqrst123456789ðABCDEFGHIJKLMNOPQRSTA

2BCDEFGHIJKLMNOPQRSTABCDEFGHIJKLMNOPQRSTABCDEFGHIJ9999ZAaaaaaaaaaaaaaaaaaaaaaaaa

3aaaaaBbbbbbbbbbbbbbbbbbbbbbbbbbbbbbCccccccccccccccccccccccccccccc

/\

Figure 6 (Part 4 of 5). Job to define and initialize the customer details file

 Chapter 8. Installing and running the CUA text model application 59

/\ \===\

/\ \ Define the Alternate Index, and the Path. \

/\ \===\

// EXEC IDCAMS,SIZE=AUTO

 DEFINE ALTERNATEINDEX -

 (NAME(CICS41ð.SAMPLE.DFHðFAI) -

 RELATE(CICS41ð.SAMPLE.DFHðFUS) -

 NONUNIQUEKEY -

 UPGRADE -

 BUFFERSPACE(4ð96) -

 RECORDSIZE(2ðð 2ðð) -

 RECORDS(5 5) -

 FREESPACE(2ð 1ð) -

 KEYS(2ð 8) -

 SHAREOPTIONS(2) -

 VOLUMES(volume)) -

 DATA -

 (NAME(CICS41ð.SAMPLE.DFHðFAI.DATA)) -

 INDEX -

 (NAME(CICS41ð.SAMPLE.DFHðFAI.INDEX)) -

 CATALOG(user_catalog)

 DEFINE PATH -

 (NAME(DFHCTPTH) -

 PATHENTRY(CICS41ð.SAMPLE.DFHðFAI)) -

 CATALOG(user_catalog)

/\

/\ \===\

/\ \ Finally, build the Alternate Index and then issue LISTCAT \

/\ \ commands to check everything is ok. \

/\ \===\

// DLBL IJSYSUC,'user_catalog',,VSAM

// DLBL DFHðFUS,'CICS41ð.SAMPLE.DFHðFUS',,VSAM,CAT=USERCAT

// DLBL DFHðFAI,'CICS41ð.SAMPLE.DFHðFAI',,VSAM,CAT=USERCAT

// EXEC IDCAMS,SIZE=AUTO

 BLDINDEX -

 INDATASET(CICS41ð.SAMPLE.DFHðFUS) -

 OUTDATASET(CICS41ð.SAMPLE.DFHðFAI) -

 CATALOG(user_catalog)

 LISTCAT ENTRIES(CICS41ð.SAMPLE.DFHðFUS)ALL -

 CATALOG(user_catalog)

 LISTCAT ENTRIES(CICS41ð.SAMPLE.DFHðFAI)ALL -

 CATALOG(user_catalog)

/\

/&

Figure 6 (Part 5 of 5). Job to define and initialize the customer details file

60 CICS Transaction Server for VSE/ESA Sample Applications Guide

// JOB DEFHELP CREATE VSAM CUA SAMPLE HELP FILE

/\ ==

/\ \ This job consists of two steps. The first defines the VSAM files \

/\ \ needed for the CUA Sample Applications Help file. The second \

/\ \ stage loads the help information into the VSAM file. \

/\ \ \

/\ \ Change the "user_catalog" to the name of your VSAM User Catalog \

/\ \ and "volume" with the label of a disk with VSAM space. \

/\ ==

// EXEC IDCAMS,SIZE=AUTO

 DELETE -

 (CICS41ð.SAMPLE.DFHðFLP) -

 CLUSTER -

 CATALOG(user_catalog)

 DEFINE CLUSTER -

 (NAME(CICS41ð.SAMPLE.DFHðFLP) -

 CONTROLINTERVALSIZE(512) -

 RECORDSIZE(38 38) -

 TRACKS(2 1) -

 KEYS(1ð ð) -

 SHAREOPTIONS(2) -

 VOLUMES(volume)) -

 DATA -

 (NAME(CICS41ð.SAMPLE.DFHðFLP.DATA)) -

 INDEX -

 (NAME(CICS41ð.SAMPLE.DFHðFLP.INDEX)) -

 CATALOG(user_catalog)

 LISTCAT ENTRIES(CICS41ð.SAMPLE.DFHðFLP) ALL -

 CATALOG(user_catalog)

/\

/\ ==

/\ \ Now populate the Help file with the data contained below for \

/\ \ by the sample application. You will need to change the two DLBLs \

/\ \ with the catalog and file information for the file. \

/\ \==\

// DLBL USERCAT,'user_catalog',,VSAM

// DLBL DFHðFLP,'CICS41ð.SAMPLE.DFHðFLP',,VSAM,CAT=USERCAT

// LIBDEF \,SEARCH=(PRD1.BASE,PRD2.SCEEBASE)

// EXEC DFH$CUAH

ð1Help: Undefined Field

ð2No Help text is currently

ð3available for this field.

 ð4

ð5To get Help, the application

ð6would have to define the

ð7field to the program and the

ð8Help Table, and add the text

ð9to the Help file. The

1ðprogram would have to be

11re-compiled and the Help

 12file reinstalled.

Figure 7 (Part 1 of 4). Job to define and initialize the help file

 Chapter 8. Installing and running the CUA text model application 61

ACCNO ð1Help: Account Number

ACCNO ð2The account number is a

ACCNO ð3maximum of 8 digits.

ACCNO ð4

ACCNO ð5The customer file in this

ACCNO ð6sample initially contained

ACCNO ð7account numbers from 1 to

ACCNO ð83ð and some test data

ACCNO ð9numbered 99, 999, 9999

ACCNO 1ðand 99999999. If you

ACCNO 11cannot access a particular

ACCNO 12account it may have been

ACCNO 13deleted or updated.

ACCST ð1Help: Account Status

ACCST ð2Account Status is a single

ACCST ð3character code that shows

ACCST ð4the customer ordering

ACCST ð5authorisation required.

ACCST ð6

ACCST ð7A=No check needed

ACCST ð8

ACCST ð9B=Supervisor

ACCST 1ð

ACCST 11C=Manager

ACTION ð1Help: Action

ACTION ð2A single character action

ACTION ð3code may be entered against

ACTION ð4one or more customers. This

ACTION ð5will generate an action list

ACTION ð6which will be processed

ACTION ð7sequentially. The list may

ACTION ð8not be updated fully until

ACTION ð9it is re-displayed.

ADDR ð1Help: Address

ADDR ð2The address is a maximum of

ADDR ð33ð characters and may be

ADDR ð4mixed case.

COMM ð1Help: Comments

COMM ð2There are three lines of

COMM ð3comments which may be used

COMM ð4for additional information.

COMM ð5These lines are optional.

COUNT ð1Help: County

COUNT ð2The county is a maximum of

COUNT ð32ð characters and may be

COUNT ð4mixed case.

Figure 7 (Part 2 of 4). Job to define and initialize the help file

62 CICS Transaction Server for VSE/ESA Sample Applications Guide

CRLIM ð1Help: Credit Limit

CRLIM ð2The credit limit is a

CRLIM ð3maximum of 4 digits. It

CRLIM ð4shows the maximimum amount

CRLIM ð5of credit available.

FFLD ð1Help: File Action

FFLD ð2This action allows users to

FFLD ð3work with the customer data

FFLD ð4in the file. You may create

FFLD ð5New data, Browse, Update,

FFLD ð6Delete, and Print the data

FFLD ð7either individually or from

FFLD ð8a list.

FFLD ð9

FFLD 1ðPress F12 to return to the

FFLD 11Action and then Enter to

FFLD 12display the pull-down menu.

FNAME ð1Help: First Name

FNAME ð2The first name is a maximum

FNAME ð3of 2ð characters and may be

FNAME ð4mixed case.

FPDSEL ð1Help: File Selection

FPDSEL ð21=Create a New customer

FPDSEL ð32=Browse one or more

FPDSEL ð4 customer details.

FPDSEL ð53=Update one or more

FPDSEL ð6 customer details.

FPDSEL ð74=Save New or Updated

FPDSEL ð8 customer details

FPDSEL ð95=Save an existing customer

FPDSEL 1ð detail as a new account.

FPDSEL 116=Delete a customer detail.

FPDSEL 127=Print as required.

HFLD ð1Help: Help Action

HFLD ð2This action allows users to

HFLD ð3access various kinds of help

HFLD ð4information.

HFLD ð5

HFLD ð6Press F12 to return to the

HFLD ð7Action and then Enter to

HFLD ð8display the pull-down menu.

HPDSEL ð1Help: Help Selection

HPDSEL ð21=Information about Help.

HPDSEL ð32=Information about the

HPDSEL ð4 contents of the panel.

HPDSEL ð53=A list of function keys

HPDSEL ð6 and their assignments.

HPDSEL ð74=A list of help available.

HPDSEL ð85=An application tutorial.

HPDSEL ð96=Copyright and application

HPDSEL 1ð version information.

Figure 7 (Part 3 of 4). Job to define and initialize the help file

 Chapter 8. Installing and running the CUA text model application 63

PCODE ð1Help: Postcode

PCODE ð2The postcode is a maximum of

PCODE ð32ð characters and may be

PCODE ð4mixed case.

RSTART ð1Help: Range Start

RSTART ð2If an account number is

RSTART ð3typed in range start without

RSTART ð4a higher number in range

RSTART ð5stop then a single customer

RSTART ð6detail will be displayed.

RSTOP ð1Help: Range Stop

RSTOP ð2If an account number is

RSTOP ð3typed in range stop and it

RSTOP ð4is higher than range start

RSTOP ð5then a list of all the

RSTOP ð6customers in the required

RSTOP ð7range will be displayed.

SAS ð1Help: Save As

SAS ð2The next available account

SAS ð3number is automatically

SAS ð4allocated by the system.

SAS ð5This is an application

SAS ð6choice to prevent saving

SAS ð7over an existing account.

SNAME ð1Help: Surname

SNAME ð2The surname is a maximum of

SNAME ð32ð characters. It MUST be

SNAME ð4typed with an initial

SNAME ð5capital to be consistent

SNAME ð6with the existing data in

SNAME ð7the file. Mixed case

SNAME ð8searching is not a function

SNAME ð9of this sample program.

TOWN ð1Help: Town

TOWN ð2The town is a maximum of

TOWN ð32ð characters and may be

TOWN ð4mixed case.

T1TITLE ð1Help: Customer Data File

T1TITLE ð2There is no help available

T1TITLE ð3at this point in the sample

T1TITLE ð4application. If the program

T1TITLE ð5was fully developed, then

T1TITLE ð6further information about

T1TITLE ð7the application would be

T1TITLE ð8available via extended help

T1TITLE ð9in the Help pull-down.

T1TITLE 1ðPress F12 to return to the

T1TITLE 11main panel, then F1ð to get

T1TITLE 12to the Actions or Enter to

T1TITLE 13display the Open Pop-up.

/\

/&

Figure 7 (Part 4 of 4). Job to define and initialize the help file

64 CICS Transaction Server for VSE/ESA Sample Applications Guide

Installing and running the application on your CICS region
The resource definitions you need to run the CUA text model application are
supplied in the CSD, either when you initialize a new CSD or upgrade an existing
one. The CUA text-level resource definitions are in a CICS-supplied group named
DFH$CTXT. You can either use the CEDA INSTALL command to install the group
on your running CICS region, or you can add the DFH$CTXT group to your start-up
group list and perform a cold start. However, in addition to installing the sample
application group, you must also modify some of the CICS-supplied groups before
you are ready to run the application. This is because the application is designed to
use mixed-case input. To enable this to work correctly, you must modify the
uppercase translation attributes on a number of CICS-supplied resource definitions.

 Logmode
In order to get the correct colors displayed, you must make sure that you log on
with a full 7-color VTAM logmode. For programming information, including a list
of queriable logmodes, see the CICS Transaction Server for VSE/ESA
Customization Guide.

Modifying resource definitions to support mixed-case input
If your terminal definitions (autoinstall models or otherwise) reference the
CICS-supplied typeterm definitions, CICS translates all input from your terminal into
uppercase. This is because the typeterm definitions specify UCTRAN(YES), and
this takes precedence over the uppercase translation option on profile resource
definitions, where the default is UCTRAN(NO) on the CICS-supplied definitions.
This automatic translation of terminal input to uppercase is unsuitable for the CUA
text model application and would result in “record not found” messages occurring
unexpectedly.

The CUA text model application, and particularly the customer data, is designed to
be used in mixed-case mode. Therefore, before attempting to run the application,
you should switch off uppercase translation for your terminal, and use translation
selectively at the transaction level.

Switching off uppercase translation at the terminal level
To switch off uppercase translation for your terminal, identify which model typeterm
definition it uses, and change UCTRAN(YES) to UCTRAN(NO). If your terminal is
autoinstalled, and you are in doubt about which typeterm definition your terminal is
installed under, look for message number DFHZC6935 in the CADL transient data
queue. This is usually sent to the MSGUSR data set, and directed to SYSOUT.
The following is an example of this message, which is preceded by DFHZC5966:

DFHZC5966 I ð9/26/94 13:ð7:ð4 CICSIDA INSTALL started for TERMINAL (Sð1ð)

(Module name: DFHBSTZ).

DFHZC6935 ð9/26/94 13:ð7:ð4 CICSIDA Autoinstall for terminal : Sð1ð,

NETNAME IGKSð1ð , using model-name DFH327ð, successful

In this example, the typeterm definition is the CICS-supplied DFH3270. If the
typeterm definition referenced by your terminal is installation-defined, you may be
able to make the change without any difficulty. However, if your test system shares
its CSD with other CICS test regions, you should ensure that you make the change
in a way that does not affect other users. If necessary, you should create terminal
and typeterm definitions specifically for your own terminal so that you can run the
CUA text model application.

 Chapter 8. Installing and running the CUA text model application 65

Unlocking and altering IBM-protected definitions
If the typeterm definition referenced by your terminal is one of the CICS-supplied
definitions, you cannot alter attributes directly. To alter a CICS-supplied definition,
which is IBM-protected, you must first copy the resource to a group of your own.
You can use the following CEDA commands to copy and alter a typeterm definition,
and replace the CICS-supplied group with your altered group in your CICS start-up
group list:

CEDA COPY GROUP(DFHTYPE) TO(userTYPE)

CEDA ALTER TYPETERM(type_name) UCTRAN(TRANID) GR(userTYPE)

CEDA REMOVE GROUP(DFHTYPE) LIST(usrLIST)

CEDA ADD GROUP(userTYPE) LIST(usrLIST)

Changing the UCTRAN attribute to TRANID causes CICS to translate to uppercase
only the transaction id (the first four characters entered at the terminal). This
avoids you having to define lowercase aliases for all the CICS-supplied
transactions, and ensures that when you type transaction names such as CEMT,
CEDA, and CESF, CICS recognizes them. The remainder of terminal input after
the first four characters is translated according to the UCTRAN attribute on the
transaction profile definition (DFHCICST for CICS-supplied transactions). However,
DFHCICST specifies UCTRAN(NO), which causes difficulties for CICS-supplied
transactions that require many operands in uppercase. For example, CEMT
INQUIRE FILE(filex) fails with the NOT FOUND condition if the installed file is
called FILEX. To ensure that uppercase translation is performed on all the data
you type on CICS-supplied transactions (so that they work as they did before you
switched off translation at the terminal level) change DFHCICST to specify
UCTRAN(YES).

Changing a CICS profile definition for uppercase translation
To change the translation attribute on the CICS-supplied profile DFHCICST, first
copy the profile to a new group, and then change the UCTRAN parameter. For
example, you can use the following CEDA commands to copy and alter the profile
definition, and replace the CICS group with your modified group in the start-up
group list.

CEDA COPY GROUP(DFHSTAND) TO(usrSTAND)

CEDA ALTER PROFILE(DFHCICST) UCTRAN(YES) GR(usrSTAND)

CEDA REMOVE GROUP(DFHSTAND) LIST(usrLIST)

CEDA ADD GROUP(usrSTAND) LIST(usrLIST)

When all the resource definitions are modified and installed as you need them, you
are ready to run the application from a suitable CICS terminal.

 Security
Ensure that the sign-on userid you are using is suitably authorized to access the
CUA text model application and the associated resources.

66 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 9. CUA text model program descriptions

This chapter gives an overview of each of the CUA text model application programs
in the form of a short summary of what each one does, highlighting any technical
points and specific CUA features. The programs are written in COBOL.

Program DFH0VT1 – primary panel
This program is invoked by transaction AC20. It displays the primary panel, T1,
and performs all associated processing.

It is initiated by the user entering the AC20 transaction code. All subsequent
interaction is either via the transaction code or via a transfer of control from another
module.

At the start of this program the Communications Area length in the EIB is examined
to see if it is zero. If it is, the user has just entered ‘AC20’ to invoke the application.
The module initializes the COMMAREA, sets up and sends the initial panel with the
cursor in position, writes the initial entries to the tracking and panel TS queues and
returns control to CICS with AC20 as the next tranid. This section of code should
be executed only once for each invocation of the application.

The valid function keys within the T1 panel are:

F1 Request contextual help.

F3 Exit to CICS.

F10 Position the cursor.

F12 Exit to CICS.

Action on invocation by transfer of control
Processing is dependent upon which function key has been pressed.

When F3
If T1 is the only panel on the screen, or if a pull-down is displayed over it, the
application is terminated and exits to CICS via the Good Morning Message
module, DFHGMM. Otherwise the panel is sent with the cursor positioned on
the main title field and control is returned to CICS with AC20 as the next tranid.

Note: If this application is run on CICS OS/2, the route to DFHGMM will result
in an error since DFHGMM does not exist in that environment.

When F10
The panel TS queue entry is read, the panel is sent with the cursor positioned
on the title field and control is returned to CICS with AC20 as the next tranid.

When F12
The first task is to rebuild the base panel image. This is done by reading the
stored image queue (PANLtrmid TS queue) for the current entry. The next step
is to position the cursor correctly. If a pull-down has yet to be displayed over
this base map to complete the rebuilt image then no cursor positioning is
performed. If a pull-down was displayed over the base map, the cursor is
positioned on the action bar depending on which pull-down was displayed,
otherwise the cursor is positioned on the title field of the main panel. After this

 Copyright IBM Corp. 1989,1999 67

the panel image is sent. A test is performed to see if this base panel image
completes the rebuilding or if another module must be called. If processing is
complete, control is returned to CICS with AC20 as the next tranid, otherwise
the tracking queue is read and used to route to the next program via
DFH0VTBL.

When CLEAR
Processing is the same as for F12 except that there is no need to test to see if
a pull-down needs to be displayed. The reason for this is that processing
CLEAR from the pull-down module executes the ‘reset panel’ code.

‘Reset panel’ processing
This is invoked from the DFH0VOL pull-down module when the user presses
CLEAR, moves along the action bar to select another pull-down, or selects a
pull-down option that requires the resetting of the base panel and routing to
another module.

The ‘reset panel’ code reads the PANLtrmid TS queue to find the current panel
image, which is then sent to the screen before control is passed either back to
the DFH0VOL module or to the next required panel as necessary.

Action on invocation by transaction code AC20
After a return to CICS with AC20 as the next tranid, the program is reentered when
the user presses a function key. The T1 map is received since contextual help is
available on it and the cursor position needs to be established. There are no user
updatable fields on the T1 map. The DFH0VTBL routine is called to establish the
current position on the program routing table. The valid function keys are
processed as follows.

When F1
The field cursor attributes are tested to determine on which field contextual help
is required. The appropriate commarea parameter is set up and passed via the
routing program to DFH0VHP. Before control is transferred, the current cursor
position is saved in the commarea to allow for later repositioning of the cursor
on the field from which contextual help was requested.

When F3
Processing exits to CICS via DFHGMM, the Good Morning Message program.

When F10
The only processing required is to determine the new position of the cursor. If it
is on the action bar, it is moved to the title field, and if it is on the title field it is
moved to the first action bar field ie FILE. The cursor is resent via a
CONTROL SEND command, and control is returned to CICS with AC20 as the
next tranid.

When F12
The module exits to CICS via DFHGMM, the Good Morning MESSAGE
program.

When CLEAR
Processing is exactly the same as when entering via a transfer of control.

When ENTER
Processing is entirely dependent upon the cursor position. If the cursor is
positioned on the action bar, parameters are set up and control is passed to
DFH0VTBL to initiate the DFH0VOL module, which displays the appropriate

68 CICS Transaction Server for VSE/ESA Sample Applications Guide

pull-down. If the cursor is displayed anywhere else on the panel then the
‘FASTPATH’ parameters are set up and the DFH0VTBL module transfers
control to the DFH0VOPN module. It does this by driving it with the OPEN FOR
BROWSE selection which would normally initiate the DFH0VOPN program.

Program DFH0VLST – list panel handler
This program is invoked by transaction AC23 and performs the LIST panel
processing.

It is initiated via a transfer of control from the DFH0VOPN module and displays a
list of customer details, showing each customer’s first name, surname and account
number. Against each name in this list is an action entry field in which the user
may type one of B, U or D to Browse, Update, or Delete the details for that
customer. After the initial display of the LIST panel, control is returned to CICS and
the program is subsequently reentered when invoked via the AC23 transaction.

The valid function keys within this panel are:

F1 Request contextual help.

F3 Return to the T1 base panel.

F5 Process the next selected action.

F7 Page backwards through the LIST - not available at the beginning of the
list.

F8 Page forwards through the LIST - not available at the end of the list.

F10 Toggle the cursor between the action bar and the main panel position
(the first action entry field).

F12 Return to the previous panel.

Action on invocation by transfer of control
Function keys are processed as follows.

When F3
The transaction-related resources are cleared from the LISTtrmid TS queue
and processing is performed to route back to the previous panel in the tracking
queue (item one of the RECDtrmid TS queue). If the previous panel was a
pop-up, the DFH0VTBL routine is called at the action and base levels to
establish the current position. Otherwise control is just transferred to the
previous module.

When F5
The next entry in the LISTtrmid TS queue is read and control is transferred to
the required program to either browse (DFH0VBRW), update (DFH0VUPD) or
delete (DFH0VDEL) the next customer’s details. Program routing is carried out
via the program DFH0VTBL.

When F10
The PANLtrmid TS queue entry is read to find the current screen image and
the cursor is set on the main panel field (the first action entry field). The panel
is sent and control is returned to CICS with AC23 as the next tranid.

 Chapter 9. CUA text model program descriptions 69

When F12
The first task is to rebuild the base panel image from the current entry in the
stored image queue (PANLtrmid). A routine is performed to build the detail
panel from the LISTtrmid TS queue, and the PANLtrmid TS queue entry is
rewritten.

Cursor positioning on this panel may be either symbolic or specific. If a return
from an F1 is in process the stored EIBCPOSN field is used to give the specific
numeric cursor position. Any other cursor positioning is entirely symbolic and
dependent upon the commarea parameters. If a pull-down has yet to be
displayed over this base map no cursor positioning is performed.

Once the cursor is in position, the panel image is sent and a test is performed
to see if this base panel image completes the rebuilding or if routing must be
performed to another module. If processing is complete, control is returned to
CICS with AC23 as the next tranid, otherwise the tracking queue is read and
used to route to the next program via DFH0VTBL. Specific processing is built
in here to allow for control having to be passed to the DFH0VOL program to
display a pull-down. This is done via the DFH0VTBL program, rather than
directly, to maintain consistency.

When CLEAR
The CLEAR key functions in the same way as F12 except that there is no need
to consider routing to the next module if a pull-down needs to be displayed
over the top of this panel. The reason for this is that processing CLEAR from
the pull-down module executes the ‘reset panel’ code.

‘Reset panel’ processing
This is invoked by DFH0VOL, the pull-down module, when the user presses
CLEAR, moves along the action bar, or selects an option that results in a
pop-up.

The ‘reset panel’ code reads the PANLtrmid TS queue to find the current panel,
which is then sent to the screen before control is passed either back to the
DFH0VOL module or to the next required panel as necessary.

A special case is dealt with in this process, to allow for the user selecting
option 8 to exit from the FILE pull-down. This exit processing is the same as
for F3 described above.

When ENTER
Firstly the tracking queue (item one of the RECDtrmid TS queue) is read and
updated with the LIST panel details. Then the PANLtrmid TS queue is read to
establish the current position. The updated entry is rewritten to the tracking
queue and the initial values set for the panel building routine to be performed.

The panel image is built in three stages; firstly, the detail lines, secondly,
information indicating which detail lines are displayed and thirdly, the function
key area.

Up to 8 detail lines are displayed on the screen at a time. The building of the
detail lines involves reading the next eight entries and moving the details from
the TS queue layout to the panel fields. If the end of the list is reached before
eight records are read, a routine is performed to turn off the action selection
entry fields and the display fields for the unused lines on the screen.

Building the paging information involves using the positional indicators in the
LISTtrmid TS queue to determine how many records to display and which
panel ID to display. The + and - indicators are also built in this routine.

70 CICS Transaction Server for VSE/ESA Sample Applications Guide

The function key area is built based upon which panel ID was set up during the
paging information processing.

The cursor is positioned on the first action selection field in the panel, the
tracking and panel TS queues are rewritten, the panel is sent, and control is
returned to CICS with AC23 as the next tranid.

Action on invocation by transaction code AC23
When this program is invoked by CICS, the PANLtrmid is read to establish the
current position and then the map is received. The valid function keys are
processed as follows.

When F1
The field cursor attributes are tested to determine on which field contextual help
is required. The appropriate commarea parameter is set up and passed via the
table searching routine to the DFH0VHP program. Before control is transferred
the current cursor position (EIBCPOSN) is saved in the commarea to allow for
later repositioning.

When F3
 Processing is the same as when entering via a transfer of control.

When F7
First the panel ID is checked to ensure that F7 is valid from the current screen
and, if it is not, an error message is returned. Otherwise processing is
performed to scroll back eight positions through the LISTtrmid TS queue. The
panel building routine is performed as described for processing ENTER via a
transfer of control, the panel image is rewritten to the PANLtrmid TS queue, the
panel is sent and control is returned to CICS with AC23 as the next tranid.

When F8
First the panel ID is checked to ensure that F8 is valid from the current screen
and, if it is not, an error message is returned. Otherwise processing is
performed to scroll forward eight positions through the LISTtrmid TS queue.
The panel building routine is performed as described for processing ENTER via
a transfer of control, the panel image is rewritten to the PANLtrmid TS queue,
the panel is sent, and control is returned to CICS with AC23 as the next tranid.

When F10
The only processing required is to determine the new position of the cursor. If it
is currently positioned on the action bar it is moved to the first action selection
field on the panel and if it is anywhere in the main panel it is moved to the first
action bar field, FILE. The cursor is resent via a ‘control send’ and control is
returned to CICS with AC23 as the next tranid.

When F12
The process described for F3 is performed to delete the LISTtrmid TS queue.
Then the tracking queue is read (item one of the RECDtrmid TS queue), the
entry for the current panel is cleared, and the previous base panel is found.
Control is transferred to the required base panel routine to allow rebuilding of
the image to begin.

When CLEAR
The panel is rebuilt from the latest entry in the PANLtrmid TS queue. The
cursor is positioned as described for processing F12 via a transfer of control,
the panel is sent and control is returned to CICS with AC23 as the next tranid.

 Chapter 9. CUA text model program descriptions 71

When ENTER
If the cursor is positioned on the action bar to request the display of a
pull-down, an indicator is set in the required commarea fields and control is
transferred to the pull-down display module DFH0VOL via the table routing
program.

If the cursor is not positioned on the action bar, the BROWSE, UPDATE and
DELETE actions that have been entered are processed. This involves reading
the LISTtrmid TS queue to find which records have action codes against them.
The action codes are stored in case the user has entered ‘=’ symbols to
indicate repetitive action selections and the records are stored in a LISTtrmid
TS queue entry for processing. The LISTtrmid TS queue entries and panel
image details are synchronized. If any invalid action codes were entered, only
the valid ones are stored, and an error message is displayed before the valid
action codes can be processed. Once all the action codes have been
validated, a routine to process the codes is initiated. This operates as
described above for processing F5 via a transfer of control.

Program DFH0VNEW – new customer panel processing
This program is invoked by transaction AC24 and performs the processing to create
a new record when the user has selected option 1 from the FILE pull-down.

It is initiated by a transfer of control from the pull-down module (DFH0VOL) and is
subsequently reentered when transaction AC24 is invoked by CICS. There is no
consideration given to the LISTtrmid TS queue in this module because new
customer processing cannot be performed via the LIST panel.

The valid function keys within this panel are:

F1 Request contextual help.

F3 Return to the T1 base panel.

F10 Toggle the cursor between the action bar and the main cursor position
(the surname).

F12 To return to the previous panel.

Action on invocation by transfer of control
 Function keys are processed as follows.

When F3
The transaction-related resources are cleared and processing performed to
route to the previous panel in the tracking queue (item one of the RECDtrmid
TS queue). If the previous panel was a pop-up then the DFH0VTBL routine is
called at the action and base levels to establish the current position, otherwise
control is just transferred to the previous module.

Clearing the transaction-related resources involves deleting any records that
are held on the customer file for ‘create’ processing but which have not been
fully created. The RECDtrmid TS queue is read to check the current status of
the record. If it is partially processed the DFH0VRIO module is called to delete
it.

72 CICS Transaction Server for VSE/ESA Sample Applications Guide

When F10
The panel TS queue entry is read to find the current screen image. The panel
is sent with the cursor positioned on the main panel field (surname), and
control is returned to CICS with AC24 as the next tranid.

When F12
If F12 is processed via a transfer of control then the first task is to rebuild the
base panel image. This is done by reading the stored image queue
(PANLtrmid) for the current entry.

Cursor positioning on this panel may be either symbolic or specific. If a return
from an F1 is in process the stored EIBCPOSN field is used to give the specific
numeric cursor position. Any other cursor positioning is entirely symbolic and
dependent upon the commarea parameters. If a pull-down has yet to be
displayed over this base map no cursor positioning is performed.

Once the cursor is in position, the panel image is sent and a test is performed
to see if this base panel image completes the rebuilding or if another module
must be called. If processing is complete, control is returned to CICS with
AC24 as the next tranid, otherwise the tracking queue is read and used to
route to the next program via DFH0VTBL. Specific processing is built in here
to allow for control having to be passed to the DFH0VOL program to display a
pull-down. This is done via the DFH0VTBL program, rather than directly, to
maintain consistency.

When CLEAR
The CLEAR key functions in the same way as F12 except that there is no need
to consider routing to the next module if a pull-down needs to be displayed
over the top of this panel. The reason for this is that processing CLEAR from
the pull-down module executes the ‘reset panel’ code.

‘Reset panel’ processing
This is invoked by DFH0VOL, the pull-down module, when the user presses
CLEAR, moves along the action bar or selects an option that results in a
pop-up.

Two special cases are dealt with in this processing, to allow for the user
selecting option 8 (exit), or option 4 (save), from the FILE pull-down. The ‘exit’
processing is as described above for F3. The ‘save’ processing involves
reading the panel TS queue to rebuild the panel image. If the record has not
been successfully validated a message is sent to the screen; otherwise the
RECDtrmid TS queue is updated to show that the new record has been
created. The panel image is sent and control is returned to CICS with AC24 as
the next tranid.

When ENTER
The tracking queue (item 1 of the RECDtrmid TS queue) is read and updated
with the NEW panel details and the panel TS queue is read to establish the
current position. The next step is to allocate a record on the Customer File.
This means calling DFH0VRIO, the remote I/O module, to find the first unused
customer account number in the file and to write a dummy record to hold that
account number for this task. When control is returned from the I/O module the
RECDtrmid TS queue entry is updated with a ‘partially complete’ indicator and
the allocated account number is inserted into the NEW panel. The panel TS
queue image is then written (or rewritten), the cursor is set on the surname field
and NEW panel is displayed for the user to fill in the details.

 Chapter 9. CUA text model program descriptions 73

Action on invocation by transaction code AC24
This program is reentered when transaction AC24 is invoked by CICS in response
to the user pressing a function key whilst the NEW panel is displayed. The panel
TS queue is read to establish the current position and then the map is received
from the screen. The valid function keys are processed as follows.

When F1
The field cursor attributes are tested to determine on which field contextual help
is required. The appropriate commarea parameter is set up and passed via the
routing program to DFH0VHP. Before control is transferred, the current cursor
position (EIBCPOSN) is saved in the COMMAREA to allow for later
repositioning of the cursor.

When F3
Processing is the same as described for entering via a transfer of control.

When F10
The only processing required is to determine the new position of the cursor. If it
is currently positioned on the action bar it is moved to the surname field, and if
it is positioned anywhere in the main panel it is moved to the first action bar
field, FILE. The cursor is resent via a ‘control send’ and control is returned to
CICS with AC24 as the next tranid.

When F12
The same process as described for F3 is performed to free the held record
entry and find the previous LISTtrmid TS queue record entry if necessary.
Then the tracking queue is read, the latest entry is cleared, the previous base
panel is found and control is transferred to the required base panel routine to
allow the rebuilding of the image to begin.

When CLEAR
The panel is rebuilt from the PANLtrmid TS queue, the cursor is repositioned as
described for processing F12 via a transfer of control and control is returned to
CICS with AC24 as the next tranid.

When ENTER
If the cursor is positioned on the action bar to request the display of a
pull-down, an indicator is set in the required commarea fields and control is
transferred to the pull-down display module DFH0VOL via the routing program.

If the cursor is not on the action bar, the tracking queue and the appropriate
RECDtrmid TS queue entries are read. If the RECORD VALIDATED indicator is
set, it is reset to allow the user to alter any of the data; otherwise the data
entered on the panel is validated. This nominal validation just involves checking
that the record has been allocated successfully and that the surname is
alphabetic. If the record does not already exist it is allocated and if the surname
is alphabetic, the RECORD VALIDATED indicator is set. Whether the record is
valid or not, the user data is stored on the RECDtrmid TS queue. The panel is
then resent and control is returned to CICS with AC24 as the next tranid.

74 CICS Transaction Server for VSE/ESA Sample Applications Guide

Program DFH0VBRW – browse customer details panel processing
This program is invoked by transaction AC25 and performs the processing
necessary when a user wants to browse a particular record or is trying to access a
list but has only retrieved a single record with the supplied criteria.

It is initiated via a transfer of control either from the DFH0VOPN pop-up module or
from the DFH0VLST base module. After presenting the initial panel the program
can be reentered from CICS via the AC25 transaction. The valid function keys are:

F1 Request contextual help.

F3 Return to the T1 base panel.

F5 Allow forward processing through a selection list if this panel was
entered via a list panel.

F10 Toggle the cursor between the action bar and the main cursor position
(surname).

F12 Return to the previous panel.

Action on invocation by transfer of control
When entering this program via a transfer of control, function keys are processed
as follows:

When F3
Data relating to the current transaction is cleared from the TS queues and
processing is performed to route to the previous panel. If the previous panel
was a pop-up, the DFH0VTBL routine is called to search the program tables at
action and base levels so as to establish the current position. Otherwise
control is just transferred to the previous module.

When F5 or ENTER
An entry is written to the tracking queue (item one of the RECDtrmid TS queue)
and the PANLtrmid queue is read to establish the current position. The
tracking queue (item one of the RECDtrmid TS queue) is updated to show the
latest position, and the routine to build the panel image is performed.

If this ‘browse’ action was initiated via a list, the required record must be found
by obtaining the account number, from the LISTtrmid TS queue, and calling
DFH0VRIO to read the customer file. This places the record in the RECDtrmid
queue, which is where the DFH0VOPN module would have placed it if the
BROWSE panel had been initiated directly. The data is moved from the record
TS queue layout into the map fields ready for display.

The appropriate panel identifier is now set up in order to select the correct
function key detail line. If all the items selected from the LIST panel have been
processed a flag is set to indicate that the function key line displayed should
not include F5, otherwise a flag is set to indicate that the function key line must
include F5. The required function key line is selected and moved into the panel
output field.

The panel is now ready to be rewritten to the PANLtrmid queue (or written if
ITEMERR was raised when it was read). The cursor is positioned on the
surname field, the panel is displayed and control is returned to CICS with AC25
as the tranid.

 Chapter 9. CUA text model program descriptions 75

When F10
A pull-down can be removed from the BROWSE panel using F10. The
PANLtrmid TS queue entry is read to obtain the latest panel image, the cursor
is set on the surname field, the panel is sent and control is returned to CICS
with AC25 as the next tranid.

When F12
The first task is to rebuild the base panel image by reading the stored image
queue (PANLtrmid) for the current entry. Cursor positioning on the panel may
be either symbolic or specific. If a return from F1 is in progress then the stored
cursor position (EIBCPOSN), is used to give the specific numeric cursor
position. Any other cursor positioning is entirely symbolic and dependent upon
the COMMAREA parameters. If a pull-down has yet to be displayed over the
base map to complete the rebuilt image then no cursor positioning is
performed.

Once the panel image has been rebuilt it is sent to the screen and then a test
is performed to see whether this base panel image completes the rebuilding of
the screen. If processing is complete control is returned to CICS with AC25 as
the next tranid; otherwise the tracking entry of the RECDtrmid TS queue is read
and used to route to the next program via DFH0VTBL. Specific processing is
built in here to allow for a pull-down needing to be displayed and control having
to be passed to the DFH0VOL program. This routing is done via the
DFH0VTBL program rather than directly so as to maintain consistency.

When CLEAR
The CLEAR key is processed in the same way as F12, except that there is no
need to consider routing to another module if a pull-down needs to be
displayed over the top of this panel. The reason for this is that the ‘reset panel’
code will be executed when processing CLEAR from the pull-down module.

‘Reset panel’ processing
This is invoked by the pull-down module, DFH0VOL, when the user presses
CLEAR, moves along the action bar or selects an option that results in a
pop-up.

The ‘reset panel’ code reads the PANLtrmid TS queue to find the current panel
image, which is then sent to the screen before control is passed either back to
the DFH0VOL module or to the next required panel as necessary.

Action on invocation by transaction code AC25
After a return to CICS with AC25 as the next tranid, the program is reentered when
the user presses a function key. Although there are no user updatable fields on
this screen a ‘receive map’ is performed to establish the cursor position. The
permitted function keys are processed as follows:

When F1
The field cursor attributes are tested to determine on which field contextual help
is required. The appropriate COMMAREA parameter is set up and passed via
the table routing program, DFH0VTBL, to the HELP program, DFH0VHP.
Before control is transferred, the current cursor position is saved in the
COMMAREA to allow for later repositioning of the cursor on the field from
which help was requested.

When F3
F3 processing is the same when reentering the program as when entering via a
transfer of control.

76 CICS Transaction Server for VSE/ESA Sample Applications Guide

When F10
The only processing required is to determine the new position of the cursor. If
it is currently displayed on the action bar then it is moved to the surname field,
or if it is already on the surname field then it is moved to the first action bar
field. The new cursor position is sent via a ‘control send’ and control is
returned to CICS with AC25 as the next tranid.

When F12
If this program is reentered with F12, either the user wants to scroll back
through the items selected from a LIST panel or wants to return to the previous
panel.

If the BROWSE panel was invoked via a LIST panel then the LISTtrmid TS
queue is searched to find the previous panel. When it is found or the
beginning of the queue is reached, the tracking queue (entry one of the
RECDtrmid TS queue) is read, the entry for the current BROWSE panel is
cleared, and the previous base panel is found. Control is then transferred to
the required base panel routine to allow the rebuilding of the image to begin.

When CLEAR
The panel is rebuilt from the image stored in the PANLtrmid TS queue, the
cursor is repositioned as described for processing F12 via a transfer of control,
the panel is sent and control is returned to CICS with AC25 as the next tranid.

When ENTER
ENTER is valid only if the cursor is positioned on the action bar. If the cursor
is not on the action bar, a message is returned, the alarm is sounded, and
control is returned to CICS with AC25 as the next tranid.

However, if the cursor is on the action bar, ENTER is used to request the
display of a pull-down. The cursor position is detected and an indicator is set
in the COMMAREA fields. Control is then transferred to the pull-down display
module DFH0VOL via the routing program DFH0VTBL.

Program DFH0VUPD – update customer record panel processing
This program is invoked by transaction AC26 and performs the processing when a
user wants to update a particular record or is trying to access a list but has only
retrieved a single record with the supplied criteria.

It is initiated via a transfer of control either from the DFH0VOPN pop-up module or
the DFH0VLST base module. After presenting the initial panel, the program can be
reentered from CICS via the AC26 transaction.

The valid function keys within this panel are:

F1 Request contextual help.

F3 Return to the T1 base panel.

F5 Allow forward processing through a selection list if this panel was
entered via a LIST panel.

F10 Toggle the cursor between the action bar and the main cursor position
(surname).

F12 Return to the previous panel.

 Chapter 9. CUA text model program descriptions 77

Action on invocation by transfer of control
Processing is dependent upon which function key has been pressed.

When F3
The transaction-related resources are cleared, which means freeing any
records on the customer file that are held for update processing but have not
been completely updated. Then processing is performed to route to the
previous panel in the tracking queue. If the previous panel was a pop-up, the
DFH0VTBL routine is called at the action and base level to establish the
current position; otherwise control is just transferred to the previous module.

If the update is being processed via a LIST panel, the LISTtrmid TS queue is
read to obtain the record key, the remote I/O module (DFH0VRIO) is called to
make the appropriate record available and the LISTtrmid TS queue is searched
to find the next entry for processing. If the update is not processed via a LIST
panel, the RECDtrmid TS queue is read to check the current state of the
record, since if the update is complete no freeing is necessary. The
DFH0VRIO module is called to perform the appropriate actions on the record.

When F5 or ENTER
If the record being processed has been returned to the UPDATE panel after the
SAVE AS option has been processed, the panel is rebuilt from the PANLtrmid
TS queue. If the record was not validated successfully before the attempt to
save it then an error message is displayed; otherwise the successful
completion message is built and control is returned to CICS with AC26 as the
next tranid. If the SAVE AS panel was not previously processed, the PANLtrmid
TS queue is read to establish the current position. The updated entry is
rewritten to the tracking queue and the routine to build the panel image is
performed.

If this update action is taking place via a LIST panel, the LISTtrmid TS queue is
read to obtain the account number of the record to be updated and DFH0VRIO
is called to read the customer file. The LISTtrmid TS queue is rewritten with a
code to show that the record is held for update. If this panel is not being
processed via a LIST panel, it is not necessary to call DFH0VRIO, because the
DFH0VOPN module will have obtained the single data record. The RECDtrmid
TS queue entry is rewritten with a code to show that the record is held for
update.

The data is moved from the TS queue layout into the map fields. The
appropriate panel identifier is set up to control the function key detail line. If all
the records selected for processing via the LIST panel have been processed
then the function key line without F5 is required, otherwise the function key line
that includes F5 must be displayed. The function key line table is searched
and the correct line is moved into the panel output field. This completes
building the panel, which is now written to the PANLtrmid TS queue. The
cursor is positioned on the main field (surname), the panel is sent and control
is returned to CICS with AC26 as the next tranid.

When F10
The PANLtrmid TS queue entry is read, the cursor is positioned on the main
panel field (surname), the panel is sent, and control is returned to CICS with
AC26 as the next tranid.

When F12
The first task is to rebuild the base panel image. This is done by reading the
stored image queue (PANLtrmid TS queue) for the current entry. Cursor

78 CICS Transaction Server for VSE/ESA Sample Applications Guide

positioning on the panel may be either symbolic or specific. If a return from F1
is in progress then the stored cursor position (EIBCPOSN), is used to give the
specific numeric cursor position. Any other cursor positioning is entirely
symbolic and dependent on the COMMAREA parameters. If a pull-down has
yet to be displayed over the base map to complete the rebuilt image then no
cursor positioning is performed.

Once the panel image has been rebuilt it is sent to the screen and then a test
is performed to see whether this base panel image completes the rebuilding of
the screen. If processing is complete control is returned to CICS with AC26 as
the next tranid; otherwise the tracking entry of the RECDtrmid TS queue is read
and used to route to the next program via DFH0VTBL. Specific processing is
built in here to allow for control having to be passed to the DFH0VOL program
to display a pull-down. This routing is done via the DFH0VTBL program rather
than directly so as to maintain consistency.

When CLEAR
The CLEAR key is processed in the same way as F12, except that there is no
need to consider routing to another module if a pull-down needs to be
displayed over the top of this panel. The reason for this is that the ‘reset panel’
code will be executed when processing CLEAR from the pull-down module.

‘Reset panel’ processing
This is invoked by the pull-down module, DFH0VOL, when the user presses
CLEAR, moves along the action bar or selects an option that results in a
pop-up.

The ‘reset panel’ code reads the PANLtrmid TS queue to find the current panel
image, which is then sent to the screen before control is passed either back to
the DFH0VOL module or to the next required panel as necessary.

There are two special cases dealt with in this processing, to allow for the user
selecting option 8 (exit) or option 4 (save) from the FILE pull-down. The exit
processing is the same as described for F3. The save processing reads the
PANLtrmid TS queue and rebuilds the panel image. If the record was not
successfully validated before the attempt to save it, a message is returned;
otherwise the indicators are tested to see whether this update is being
processed as an individual record or via a LIST. The appropriate TS queue is
updated to show that the update is complete, the panel image is sent, and
control is returned to CICS with AC26 as the next tranid.

Action on invocation by transaction code AC26
After a return to CICS with AC26 as the next tranid, the program is reentered when
the user presses a function key. First the PANLtrmid TS queue is read to establish
the current position, then the map is received. After this the function key area is
built and the updated panel image rewritten so that if the user selects a pull-down
from the action bar, previous updates will not be lost. They are not added to the file
because they have not been validated but the user can still be restored to his
previous screen position.

When F1
The field cursor attributes are tested to determine on which field contextual help
is required. The appropriate commarea parameter is set up and passed via the
routing program to DFH0VHP. Before control is transferred, the current cursor
position (EIBCPOSN) is saved in the commarea to allow for later repositioning
of the cursor at the field from which help was requested.

 Chapter 9. CUA text model program descriptions 79

When F3
Processing is the same as when entering the program via a transfer of control.

When F5
If the update is being processed via a LIST but the end of the list has been
reached, F5 is invalid and an appropriate message is returned. Otherwise
control is transferred via the DFH0VTBL program to the DFH0VLST program to
allow it to pass processing on to the next module required from the selection
LIST.

When F10
The only processing required is to determine the new position of the cursor. If it
is on the action bar, it is moved to the main panel field (surname) and if it is
within the UPDATE panel, it is moved to the first action bar field, FILE. The
cursor is resent via a ‘control send’, and control is returned to CICS with AC26
as the next tranid.

When F12
The same processing as described for F3 is performed to free the held record
entry and find the previous LISTtrmid TS queue record entry if necessary.
Then the tracking queue is read, the entry for the current panel is cleared and
the previous base panel is found. Control is transferred to the required base
panel routine to allow the rebuilding of the image to begin.

When CLEAR
The required processing is to rebuild the panel from the PANLtrmid TS queue,
reposition the cursor as described for F12 via a transfer of control, send the
panel, and return control to CICS with AC26 as the next tranid.

When ENTER
If the cursor is positioned on the action bar to request the display of a
pull-down, an indicator is set in the required COMMAREA fields and control is
transferred to the pull-down display module DFH0VOL via the routing program.

If the user presses ENTER when the cursor is not on the action bar, nominal
validation is carried out on the data on the screen. The surname is checked to
see that it is alphabetic and then an indicator is set to show that the record has
been validated. If the record is found to be valid the RECDtrmid TS queue
entry is updated with the data from the screen; otherwise an appropriate error
message is sent with an alarm.

Program DFH0VDEL – delete customer details panel processing
This program is invoked by transaction AC27 and performs the processing
necessary when a user wants to delete a particular record or when a user selects
the delete action from a selection list.

It is initiated via a transfer of control either from the pull-down module (DFH0VOL)
or from the list panel module (DFH0VLST). After presenting the initial panel all
further interaction is performed via the AC27 transaction.

The valid function keys within this panel are:

F1 Request contextual help.

F3 Return to the T1 base panel.

80 CICS Transaction Server for VSE/ESA Sample Applications Guide

F5 Allow forward processing through a selection list from a list panel.

F10 Toggle the cursor between the action bar and the main cursor position
(account number).

F12 To return to the previous panel.

Action on invocation by transfer of control
When entering via a transfer of control, processing of the function keys is as
follows:

When F3
The transaction-related resources are cleared up and processing is performed
to route to the previous panel in the tracking queue (item one of the RECDtrmid
TS queue). If the previous panel was a pop-up, the DFH0VTBL routine is
called at the action and base levels to establish the current position; otherwise
control is just transferred to the previous module. Clearing up the
transaction-related resources involves freeing any records that are held on the
customer file for delete processing but which have not been completely deleted.
This processing is the same as for F12.

If the delete is being processed via a LIST panel, the LISTtrmid TS queue is
read to obtain the record key, the remote I/O module (DFH0VRIO) is called to
make the appropriate record available and the LISTtrmid TS queue is searched
to find the next entry for processing. If the delete is not being processed via a
LIST panel, the RECDtrmid TS queue is read to check the current state of the
record (if the delete is complete no freeing is necessary) and then the
DFH0VRIO module is called to perform the appropriate actions on the record.

When F5 or ENTER
The tracking queue (item 1 of the RECDtrmid TS queue) is updated with the
delete panel details. Then the panel TS queue is read to establish the current
position.

The updated entry is rewritten to the tracking queue. If this delete action is
taking place via a LIST panel the panel-building routine is performed. The
LISTtrmid TS queue is read to find the account number of the record and
DFH0VRIO is called to read the customer file. The LISTtrmid TS queue is
rewritten with an indicator to show that the record is held for deletion.

If only a single record is being processed, without going via a LIST panel, the
RECDtrmid TS queue entry is rewritten with an indicator to show that it is held
for deletion.

The record is read from the RECDtrmid TS queue and the data is moved from
the TS queue layout into the map fields. The appropriate panel identifier is set
up to control the function key line. If all the items selected from the LIST panel
have been processed, the flag for the function key line without F5 is set;
otherwise the flag for the function key line including F5 is used. The required
function key line is then moved into the panel output field.

The fields on the delete panel are all protected except for ‘account number’,
which is used initially to select the record when processing from the pull-down
option. Once the record is found, a confirmation indicator is set to show that
the next ENTER key is to confirm the deletion and therefore the account
number is protected.

 Chapter 9. CUA text model program descriptions 81

This completes the panel building process and the panel is now written to the
PANLtrmid TS queue. The cursor is moved to the account number field, the
panel is sent, and control is returned to CICS with AC27 as the next transid.

When F10
The panel TS queue entry is read, the cursor is set on the main panel field
(account number), the panel is sent, and control is returned to CICS with AC27
as the next tranid.

When F12
If F12 is processed via a transfer of control then the first task is to rebuild the
base panel image. This is done by reading the stored image queue
(PANLtrmid) for the current entry.

Cursor positioning on this panel may be either symbolic or specific. If a return
from an F1 is in process the stored EIBCPOSN field is used to give the specific
numeric cursor position. Any other cursor positioning is entirely symbolic and
dependent upon the commarea parameters. If a pull-down has yet to be
displayed over this base map no cursor positioning is performed.

Once the cursor is in position, the panel image is sent and a test is performed
to see if this base panel image completes the rebuilding or if routing must be
performed to another module. If processing is complete control is returned to
CICS with AC27 as the next tranid; otherwise the tracking queue is read and
used to route to the next program via DFH0VTBL. Specific processing is built
in here to allow for a pull-down being required and control having to be passed
to the DFH0VOL program. This is done via the DFH0VTBL program, rather
than directly, to maintain consistency.

When CLEAR
The CLEAR key functions in the same way as F12 except that there is no need
to consider routing to the next module if a pull-down needs to be displayed
over the top of this panel. The reason for this is that processing CLEAR from
the pull-down module executes the ‘reset panel’ code.

‘Reset panel’ processing
This is invoked by DFH0VOL, the pull-down module, when the user presses
CLEAR, moves the cursor along the action bar, or selects an option that results
in a pop-up.

The ‘reset panel’ code reads the PANLtrmid TS queue to find the current panel,
which is then sent to the screen before control is passed either back to the
DFH0VOL module or to the next required panel as necessary.

A special case is dealt with in this process, to allow for the user selecting
option 8 to exit from the FILE pull-down. This exit processing is the same as
for F3 described above.

Action on invocation by transaction code AC27
After a return to CICS with AC27 as the next tranid, the program is reentered when
the user presses a function key. The PANLtrmid TS queue is read first in order to
establish the current position, and then the map is received. The valid function
keys are processed as follows.

When F1
The field cursor attributes are tested to determine on which field the user
requires contextual help. The appropriate commarea parameter is set up and
passed via the table searching program DFH0VTBL to the help program

82 CICS Transaction Server for VSE/ESA Sample Applications Guide

DFH0VHP. Before control is transferred the current cursor position is saved in
the commarea to allow for later repositioning on the correct field.

When F3
This processing is the same as when control is transferred from another
transaction.

When F5
The user may press F5 to scroll through a list of items. Control is transferred,
via the routing program DFH0VTBL, to the DFH0VLST program to allow the
next panel to be selected for display.

When F10
The only processing required is to determine the new position of the cursor. If
it is currently displayed on the action bar it is moved to the account number
field or if it is already on the account number field it is moved to FILE, the first
action bar field. The newly positioned cursor is sent via a control send and
control is returned to CICS with AC27 as the next tranid.

When F12
The same processing as for F3 is performed to free the held record entry and
find the previous record entry in the queue LISTtrmid. Then the tracking queue
is read, the entry for the current panel is cleared, and the previous base panel
is found. Control is transferred to the required base panel module to allow the
rebuilding of the image to begin.

When CLEAR
The panel is rebuilt from the PANLtrmid TS queue. The cursor is repositioned
as described for the F12 transfer of control processing, the panel is sent, and
control is retuned to CICS with AC27 as the next tranid.

When ENTER
When the user presses ENTER with the cursor positioned on the action bar to
request the display of a pull-down, the cursor position is detected and
indicators are set in the commarea. Control is transferred to the pull-down
display module DFH0VOL via the table router.

If the user presses ENTER when the ‘confirm deletion’ indicator is set, the
DFH0VRIO module is called to actually delete the record from the file. The
appropriate TS queue, either LISTtrmid or RECDtrmid, is updated to indicate
that the deletion is complete. The function key area is rebuilt, the map is
resent, and control is returned to CICS with AC27 as the next tranid. The
confirmation indicator is turned off.

If the user presses ENTER when the confirmation indicator is turned off, an
attempt is made to perform the processing described for F5 and ENTER via a
transfer of control from a list. The panel building routine is performed, the
confirmation flag is set, the function key area is set up, the panel is sent, and
the AC27 transaction code is returned to CICS.

 Chapter 9. CUA text model program descriptions 83

Program DFH0VOL – overlay handler
This program is invoked by transaction AC21 and performs the processing required
when a selection is made from the action bar.

The base panel that is currently displayed, transfers control to this module
indicating which pull-down has been selected and so which processing should
occur. When the pull-down has been displayed the user can select the available
options from it. The selections are validated and control transferred dependent
upon the type of panel to be displayed, for example a base panel and a pop-up, a
‘full screen’ pop-up, or a pull-down and a pop-up.

The valid function keys within this panel are

F1 Request contextual help.

F3 Return to the T1 base panel, or to exit to CICS if the pull-down is
displayed over the T1 panel.

F10 Remove the pull-down, returning the cursor to the main cursor position
on the base panel.

F12 Return to the previous panel, returning the cursor to the action bar.

Action on invocation by transfer of control
The function keys are processed as follows:

When F12
Processing depends upon which pull-down is displayed and whether the display
of the pull-down completes the image. If the image is complete, control is
returned to CICS with AC21 as the next tranid. If not, the pull-downs are
rebuilt and sent, and control is transferred to the next appropriate module via
the routing program, DFH0VTBL.

When CLEAR
Processing is exactly the same as for F12.

When ENTER
The requested pull-down panel is built and displayed. The options available in
the pull-down can vary according to the current base panel. Before the panel
is sent, the options are passed to the DFH0VTBL module which checks what
options are available according to the current action and base level. The
options that are not available are displayed in blue with an asterisk ‘*’ replacing
the option number. When all the options have been checked, the panel is sent
and control is returned to CICS with AC21 as the next tranid.

Action on invocation by transaction code AC21
The appropriate pull-down map is received and the valid function keys are
processed as follows:

When F1
The field cursor attributes are tested to determine on which field contextual help
is required. The appropriate commarea parameter is set up and passed via the
routing program to DFH0VHP.

84 CICS Transaction Server for VSE/ESA Sample Applications Guide

When F3
The tracking queue entry is read to find the previous entry to which to transfer
control. According to the rules of CUA this must be a base panel, because it is
possible to select a pull-down only from an action bar on a base panel.

When F10
The processing is the same as described for F3.

When F12
The tracking queue (item one of the RECDtrmid) is read to find the base panel
that is under the current pull-down. Commarea parameters are set so that the
panel rebuild will stop after the base panel. Control is transferred to the base
panel program via the routing program DFH0VTBL.

When CLEAR
Processing is the same as described for F12 except that the pull-down is
redisplayed as well as the base panel.

When ENTER
The actual processing of the user’s selections from the pull-downs takes place.
The processing varies depending on the pull-down but follows a pattern of
general validation, specific validation, and action.

FILE pull-down processing. The first action is to check if the cursor is
positioned on the HELP action bar field. If it is, the appropriate parameters are
set up to force the base panel to be reset and the HELP panel to be displayed
over the top.

The selection entry field is checked to see that it is not alphabetic, and that it is
a valid option. If it is not valid the panel is redisplayed and control is returned
to CICS with AC21 as the next tranid.

If the selection is ‘8’ then an indicator is set to trigger ‘exit’ processing
throughout the application.

If one of the currently active panels (in the tracking queue) is a list panel and
any selection other than SAVE or SAVE AS is made, the list indicator in the
commarea is set to show that this list is being displayed, not processed, and
the tracking queue is set back to point to the list panel as the current base
panel. This is to allow for the termination of action list processing via the
pull-down, whilst still allowing SAVE and SAVE AS to perform correctly.

If the SAVE option is selected (option 4) then the DFH0VRIO module is called
to save the record from the RECD TS queue to the CUSTOMER file. This is
done only if the record has been successfully validated (an indicator is set in
the COMMAREA).

If the SAVE AS option is selected (option 5) and the record has not been
validated then control is transferred to the base panel via the DFH0VTBL
routine after reading the index data from the tracking queue.

The final stage in processing the FILE pull-down is to transfer control to the
next module that will build the selected panel image. This is dependent upon
the panel type. If the option selected leads to a base panel then control can be
transferred straight there. The program name is already known but position in
the action/base table must be established, using the last three characters of the
program name as a key. For a FULL SCREEN pop-up it is only necessary to
transfer control straight to the processing module. For a partial pop-up that
results from a selection, the base panel must be redisplayed first. A base level

 Chapter 9. CUA text model program descriptions 85

search is performed through DFH0VTBL to establish the position and control is
transferred to the base processing module with a status code of ‘RESET’ to
force it to reset the panel.

HELP pull-down processing. The HELP pull-down processing is almost the
same as described for the FILE pull-down except for the option-specific
validation. For the HELP pull-down the first check is to see if the cursor is
positioned on the FILE action bar field to select the FILE pull-down for
presentation. If it is then the appropriate parameters are set up to force the
base panel to be reset and the FILE panel to be displayed over the top. The
selection entry field is checked to see that it is not alphabetic. The selection is
then checked to see if it is unavailable or invalid. After this, control is
transferred to the next required module in the same way as described for FILE
pull-down processing.

Program DFH0VOPN – open file pop-up handler
This program is invoked by transaction AC22. It performs the processing required
when the ‘open for browse’ or ‘open for update’ options are selected from the FILE
pull-down, or when the ‘open for browse’ pop-up is obtained by the fastpath route
of pressing ENTER from the T1 panel.

The OPEN pop-up is initially displayed as a result of a transfer of control from the
currently active base panel and is subsequently redisplayed when transaction AC22
is invoked by CICS.

The only valid function keys within this panel are:

F1 Request contextual help.

F12 Return to the previous panel.

CLEAR is an invalid function key but is handled specifically by this application to
enable the rebuilding of the current panel image(s).

Action on invocation by transfer of control
The function keys are processed as follows.

When F3
The transaction-related resources are cleared from the TS queues and
processing is performed to route to the previous panel in the tracking queue.
Depending on the system design, the previous panel must be a base panel;
however, there is a test to see what sort of panel it was as an example of how
to process a pop-up resulting from a previous pop-up.

When F12
The first step is to read the current panel TS queue entry and send the OPEN
panel image. A test is performed to see if sending this panel completes the
required image. If the panel building is complete, control is returned to CICS
with AC22 as the next tranid; otherwise the tracking queue is read for the next
entry and control is routed to the appropriate program for it to present the
required image.

When CLEAR
Processing is the same as described for F12.

86 CICS Transaction Server for VSE/ESA Sample Applications Guide

When ENTER
An entry is written to the tracking and panel TS queues and an OPEN panel is
built with all the entry fields filled with blanks to block out any underlying
display. The panel is sent and control is returned to CICS with AC22 as the
next tranid.

Action on invocation by transaction code AC22
The panel queue is read to find the current item number so that the panel can be
rewritten. The map is received and then processing continues, depending on which
function key was pressed.

When F1
The field cursor attributes are tested to determine on which field contextual help
is required. The appropriate commarea parameter is set up and is passed via
the routing program DFH0VTBL to the DFH0VHP program.

When F12
The current entry (the one with the OPEN panel in it) is cleared from the TS
queues and the tracking queue record (item 1 of the RECDtrmid TS queue) is
searched to find the previous base panel. The tracking queue is updated and
DFH0VTBL is called to determine the program to which control should be
transferred in order to start rebuilding the panel.

When CLEAR
The same process as for F12 is performed, except that the current entry is not
cleared.

When ENTER
The actual panel processing takes place. This involves verifying the key fields
entered and if they are valid, calling the File I/O module (DFH0VRIO) to access
the customer file and read the appropriate records. If the keys are not valid,
fields in error are highlighted in yellow and reverse video. On returning from
the I/O module it is determined whether the keys supplied identified a single
record or a list of records. To process a list, control is transferred to
DFH0VLST; otherwise control is transferred to DFH0VBRW or DFH0VUPD
depending on which FILE pull-down option was selected.

Note that the programs are not specified directly by their names but are called
dynamically by the program DFH0VTBL.

Program DFH0VPRT – print pop-up handler
This program is invoked by transaction AC28 and performs the processing required
when the PRINT pop-up is selected, that is, option 7 from the FILE pull-down.

It is initiated as a result of a transfer of control from a base panel and is
subsequently reentered when transaction AC28 is invoked by CICS.

The only valid function key within this panel is:

F12 Return to the previous panel.

The map is not received since no data can ever be entered on this panel and
contextual help is not available on any of the fields.

The CLEAR key is invalid under CUA rules but this application handles it by
refreshing the screen.

 Chapter 9. CUA text model program descriptions 87

Action on invocation by transfer of control
Processing is dependent upon which function key has been pressed.

When ENTER
The panel is built and an entry written to the tracking queue (item one of the
RECDtrmid TS queue). The screen image is written to the PANLtrmid TS
queue, the panel is sent, and control is returned to CICS with AC28 as the next
tranid.

When CLEAR
The panel TS queue is read, the image is sent, and control is returned to CICS
with AC28 as the next tranid.

Action on invocation by transaction code AC28
When F12

The tracking queue is read, the current entry (the one with the PRINT panel in
it) is cleared and the previous base panel is located. The DFH0VTBL module
is called to determine the program to which control should be transferred in
order to start rebuilding the panel.

When CLEAR
The same action as for F12 is performed, except that the current entry is not
cleared. Once the application transfers control back to this module, having
rebuilt all of the previous images, the PANLtrmid TS queue is read, the panel is
sent, and control is returned to CICS with AC28 as the next tranid.

Program DFH0VSAS – save customer details pop-up handler
This program is invoked by transaction AC2A and performs the processing required
when the SAVE AS option is selected, that is, option 5 from the FILE pull-down.

The panel is initially displayed as a result of a transfer of control from the currently
active base panel and is subsequently reentered when transaction AC2A is invoked
by CICS.

The only valid function keys within this panel are:

F1 Request contextual help.

F12 Return to the previous panel.

CLEAR is an invalid function key under the CUA rules, but is handled specifically
by this application to refresh the screen.

Action on invocation by transfer of control
Processing is dependent upon which function key has been pressed.

When F3
The transaction-related resources are cleared and processing is performed to
route to the previous panel in the tracking queue. The code contains a test to
see if the previous entry was a pop-up or any other type of panel, although the
system design requires that it should always be a base panel. This code is
provided as an example of how to process a pop-up that results from a
previous pop-up.

88 CICS Transaction Server for VSE/ESA Sample Applications Guide

When F12
The current PANLtrmid TS queue entry is read and the SAVE AS panel image
is sent. A test is performed to see if this panel completes the required image,
and if so, control is returned to CICS with AC2A as the next tranid; otherwise
the tracking queue is read to find the next entry to which control should pass.

When CLEAR
Processing is exactly the same as described for processing F12.

When ENTER
An entry is written to the tracking and panel TS queues, and the DFH0VRIO
routine is called to allocate the next available record on the file. The SAVE AS
panel is sent, showing the record to be allocated and requesting confirmation
from the user. Control is then returned to CICS with AC2A as the next tranid.

Action on invocation by transaction code AC2A
After a return to CICS with AC2A as the next tranid, the program is reentered when
the user presses a function key. The SAVE AS panel is received into the data area
and the valid function keys are processed as follows.

When F1
The field cursor attributes are tested to determine on which field contextual help
is required. The appropriate commarea parameter is set up and passed via the
routing program to the DFH0VHP program.

When F12
The tracking queue is read. If the record has been allocated the I/O routine,
DFH0VRIO, is called to delete it so that it is not left in a partially allocated state
on the file. The current entry (the one with the SAVE AS panel in it) is cleared
and the tracking queue (ITEM 1 of the RECDtrmid TS queue) is searched for
the previous base panel. After the tracking queue has been updated the
DFH0VTBL module is called to determine the program to which control should
be transferred to start rebuilding the panel image.

When CLEAR
Similar processing to that described for F12 is performed except that the
current entry is not is not cleared and the partially allocated record is not
deleted.

When ENTER
The actual saving of the data takes place. This involves calling the I/O module
(DFH0VRIO) to save the data in the newly allocated record. Control is
transferred to the previous base panel by reading the previous track entry and
routing via the program (DFH0VTBL). This method of implementation allows
this pop-up to be made available over any base panel.

Program DFH0VHLP – help pop-up handler
This program is invoked by transaction AC2C and performs the processing required
when the HELP full screen pop-up is displayed, that is, when the user selects one
of the options 1 through 5 from the HELP pull-down.

It is initiated as a result of a transfer of control from the overlay module
(DFH0VOL), and is subsequently reentered when transaction AC2C is invoked by
CICS.

 Chapter 9. CUA text model program descriptions 89

The only valid function key within this panel is:

F12 Return to the previous panel.

The map is not received since no data can ever be entered on this panel and
contextual help is not available on any of the fields.

The CLEAR key is invalid under CUA rules but this application handles it by
refreshing the screen.

Action on invocation by transfer of control
When ENTER

The panel is built and an entry is written to the tracking queue (item one of the
RECDtrmid TS queue). The screen image is written to the PANLtrmid TS
queue, the panel is sent, and control is returned to CICS with AC2C as the
next tranid.

Action on invocation by transaction code AC2C
When F12

The tracking TS queue is read, the current entry (the one for the HELP pop-up)
is cleared, and the previous base panel is located. The DFH0VTBL module is
called to determine the program to which control should be transferred in order
to start rebuilding the panel from the previous base panel.

When CLEAR
The panel is redisplayed from the current PANLtrmid TS queue entry and
control is returned to CICS with AC2C as the next tranid. This simple
processing is possible because no panels can be overlaid on this full screen
pop-up.

Program DFH0VHP – contextual help pop-up handler
This program is invoked by transaction AC2E and performs the processing required
when the CONTEXTUAL HELP pop-up is built as a result of the function key F1
being pressed while the cursor is on a valid field.

The panel is initially displayed as a result of a transfer of control from the current
panel and is reentered when CICS invokes the AC2E transaction. This panel can
be on the screen at the same time as a pull-down but no panel can be displayed
over the top of it.

The only valid function key is:

F12 Return to the previous panel.

Action on invocation by transfer of control
When F1

Processing starts by writing an entry to the tracking queue to show that this is
the current panel. The local I/O processor, DFH0VLIO, is called to access the
contextual help text for the required field. The panel is built from the
HELPtrmid TS queue built in the DFH0VLIO module. When the panel is ready,
it is sent to the screen and control is returned to CICS with AC2E as the next
tranid. The actual screen image is written to the PANLtrmid TS queue.

90 CICS Transaction Server for VSE/ESA Sample Applications Guide

When CLEAR
The current entry from the PANLtrmid TS queue is read, the image is sent to
the screen and control is returned to CICS with AC2E as the next tranid. The
generated BMS DSECT is redefined by a user defined DSECT, which allows
the use of GROUP fields and ARRAYS to enable much more compact and
modular processing. Care must be taken to ensure that if ever the main BMS
DSECT is changed. the user-defined DSECT is kept in line with it. Failure to
do so can lead to PROG402 errors, data checks, and so on.

Action on invocation by transaction code AC2E
When the transaction AC2E is invoked by CICS the map is not received as there
are no input fields on it. The valid function keys are processed as follows.

When F12
The HELPtrmid TS queue, which holds the current help information, is deleted.
The tracking queue is read and the latest entry (for the HELP pop-up) is
cleared. The previous base is found and control is transferred to the
appropriate module via the DFH0VTBL routing program.

When CLEAR
The processing is the same as for F12 except that the HELPtrmid TS queue is
not deleted and the current tracking entry is not cleared.

Other
All other function keys are invalid. The panel is sent with an error message
and control is returned to CICS with AC2E as the next tranid.

Program DFH0VABT – about pop-up handler
This program is invoked by transaction AC2F and performs the processing required
when the ABOUT pop-up is selected, that is, option 6 in the HELP pull-down.

It is initiated as a result of a transfer of control from a base panel, and is
subsequently reentered when transaction AC2F is invoked by CICS.

The only valid function key within this panel is

F12 return to the previous panel.

The map is not received since no data can ever be entered on this panel and
contextual help is not available on any of the fields.

The CLEAR key is invalid under CUA rules but this application handles it by
refreshing the screen.

Action on invocation by transfer of control
When ENTER

The panel is built and an entry is written to the tracking queue (item one of the
RECDtrmid TS queue). The screen image is written to the PANLtrmid TS
queue, the panel is sent, and control is returned to CICS with AC2F as the next
tranid.

 Chapter 9. CUA text model program descriptions 91

Action on invocation by transaction code AC2F
When F12

The tracking TS queue is read, the current entry, (the one for the ABOUT
pop-up), is cleared and the previous base panel is located. The DFH0VTBL
module is called to determine the program to which control should be
transferred in order to start rebuilding the panel from the previous base panel.

When CLEAR
The panel is redisplayed from the current PANLtrmid TS queue entry and
control is returned to CICS with AC2F as the next tranid. This simple
processing is possible because no panels can be overlaid on this full screen
pop-up.

Program DFH0VTBL – table router
This program is not invoked by a transaction. It is called dynamically by the other
modules in the application.

It matches parameters in the commarea against prebuilt user tables in order to find
the names of the programs to which control may be passed. This table searching
saves the programmer of each module having to know which options are available
at each particular point in the application. The table maintains this information, and
also gives an amount of flexibility in program naming, testing and installing since
test versions of programs could easily be substituted for production source simply
by changing the table entry and recompiling DFH0VTBL.

The table has three dimensions, action, base, and selection. The CUA text model
application has only one object, the customer data file, but if there were more than
one object, this would be a four-dimensional table with the object as the highest
level.

There are six types of search that can be called for:

 1. Action level

 2. Base level

 3. Selection level

4. Action and base level

5. Action and base to DFH0VOL

6. Function key search.

Searches at the different levels are processed as follows.

Action level
The ‘action selected’ field in the commarea is matched against the table. If a
match is found, the entry is positioned at this point in the table. If no match is
found, the action is invalid.

Base level
The ‘base indicator’ from the commarea is matched against the table. If a
match is found, the matching entry contains the program name which is
returned to the calling program. If no match is found, the base panel is flagged
as not available.

92 CICS Transaction Server for VSE/ESA Sample Applications Guide

Selection level
The ‘selection’ field from the COMMAREA is matched against the table. If a
match is found, the matching entry contains the program name and program
type, which are passed back to the calling module.

There are various switches and indicators that can be set during application
processing, therefore, further testing must be performed. When any selection
program name in the table is set to ‘TURNDOFF’ it has been turned off by the
application designer, because it is not available at this point in the application.
For example, if the LIST panel has been processed, it is not possible to select
options 2 or 3 (OPEN FOR BROWSE or UPDATE) because it is not possible to
process multiple lists.

If the selection is not found, the processing goes on to check the function key
table. If the selection is found, the program name and type are returned;
otherwise the invalid selection indicator is set and the program name DFH0VOL
is returned.

Action and base levels
The action and base level searches are performed as described above and the
resulting program name is returned.

Action and base levels returning to the DFH0VOL program
This type of search is used when a pull-down is requested from a base panel.
The index indicators are positioned on the action and base dimensions and
DFH0VOL is set as the name of the program to return to.

Function key table search
The function key table is a separate table that is also accessed by this module.
It maintains a list of program names by function key, and is used to find the
programs that can be initiated by the user pressing a function key, for example,
F1 for DFH0VHP, the contextual help program. It is searched using alphabetic
keys that do not occur on the selection table. If the key is found the program
name and type are returned; otherwise the invalid key indicator is set and the
program name DFH0VOL is returned.

Program DFH0VAB – abend handler
This program is invoked by transaction AC2D and is called from any application
module that terminates with a CICS abend.

It presents a panel showing the name of the module that abended, the number of
the CICS call that was last executed, the actual abend number from EIBRESP and
the resource that was being operated upon when the abend occurred,
(EIBRSRCE).

The only valid function key within this panel is:

F3 Erase the panel and return control to CICS.

 Chapter 9. CUA text model program descriptions 93

Program DFH0VRIO – customer data file handler
This program is not invoked by a transaction, it is linked to by the other programs in
the application.

This is the remote I/O handling module. Its purpose is to process the I/O functions
on the customer file (DFH0FCUS) and the customer file secondary index
(DFH0FCAI). The functions performed include accessing data from the file and
updating records on it. These operations are driven by parameters in the
COMMAREA and data is passed between the calling module and this operating
module via the RECD and LIST TS queues. The module is designed such that
other files could be added to it with only minor modifications. The intention is that
eventually this module could be installed on a Data Owning Region (DOR) that is
accessed across an APPC link. The commarea and any required data (for
example, updated records) could be passed across the link to this module for
processing and the appropriate response passed back. This implementation would
require several new modules to perform the APPC processing, and slight
modification to any front-end modules that call DFH0VRIO, to make them call the
new APPC front end processor.

The processing in the module is based on I/O processing type. There are seven
types:

 1. Read Record

2. Read for Update

 3. Free Record

 4. Allocate Record

 5. Write Record

 6. Delete Record

 7. Save Record.

They function as follows.

Read Record (‘RR’)
This can operate on either the primary index, ‘customer number’, or the
secondary index, ‘customer name’.

If data has been entered in the ‘customer name’ field of the OPEN panel
(OPN), the secondary index is processed. There are three different ways of
reading the secondary index,

1. With a specific key so that all records with that key are read
2. Generically, using a partial key followed by an asterisk (*)
3. Using an asterisk (*) as a wild card so that the whole file is read.

These three methods all result in the same basic processing. A STARTBR is
performed. If the response is normal, the record is read; if not, the condition is
handled in the calling module. The entry is then written to the list TS queue and
further records are read and copied to the TS queue until one is found whose
key does not match the key specified by the user.

If a Read Record is requested and the customer field is blank but a customer
number (or range of numbers) has been entered, similar processing is
performed on the primary index. A STARTBR is followed by reading the

94 CICS Transaction Server for VSE/ESA Sample Applications Guide

records with the specified customer number(s), and the entries are written to
the list TS queue. If the Commarea indicators show that a record is to be
updated, the Read for Update processing is performed as described below.

If a Read Record is requested with any other status, a single read on the
primary index is performed. The record is written to the RECDtrmid TS queue,
and if the LIST panel is being processed the tracking queue is updated,
otherwise the tracking queue is updated in the calling module.

Read for Update (‘RU’)
Processing is performed on the primary index. The RECD TS queue is read,
and then the customer file is read for update. A check is made to see whether
the record is in use by another user. There is a 4-byte indicator field on the end
of each record to identify any user who is holding a record for update. If the
record is already in use, a return code is set to indicate the fact to the calling
program. If the record is available the user’s terminal ID is put in the indicator
to show that the user has it for update, and the record is written to the RECD
TS queue.

Free Record (‘FR’)
This processing is used when records are held for delete or update but the
user has chosen to exit from this processing without completing it. The
customer file is read with the account number as the key, and the record
locking indicator is reset.

Allocate Record (‘AL’)
This process is called from the NEW panel to allocate the first available
account number on the file for a new record to be created. The customer file is
scanned to find the lowest available customer account number and the record
found is marked as locked by the user. The record entry is written to the
RECDtrmid TS queue.

Write Record (‘WR’)
This process simply reads the record from the RECD TS queue and writes it to
the customer file using the primary index.

Delete Record (‘DD’)
This process is performed from the DELETE panel to delete a specific record
from the customer file, and is also used from the NEW panel to delete any
dummy entries that are not required because the user has chosen to abandon
processing. The RECD TS queue is read to obtain the key of the record to be
deleted and then the delete is performed against the customer file using the
primary index. If any errors occur they are dealt with in the calling module.

Save Record (‘SR’)
This process performs the Read for Update procedure to transfer the record to
the RECD TS queue. The user’s updates are applied to the record, which is
then re-written to the customer file.

After the required type of I/O processing, the LISTtrmid TS queue is examined and
if there is only a single entry in it, it is turned into a RECDtrmid TS queue. This is
because the design dictates that an inquiry that results in only one record being
read should transfer control to the appropriate base panel, not the list panel.

Control is then returned to the calling program.

 Chapter 9. CUA text model program descriptions 95

Program DFH0VLIO – help file handler
This program is not invoked by a transaction, but is linked to by the module
DFH0VHP.

This is the local I/O handling module. Its only purpose is to read the local HELP
file (DFH0FHLP) and create the HELPtrmid TS queue from which the DFH0VHP
module can build the ‘help’ pop-ups. It could be adapted to process any other local
files as it is parameter driven from the commarea and the resulting data is always
returned via temporary storage.

The only I/O request type passed to this module is ‘RR’ - Read Record. This
causes a key field to be built, consisting of a screen field name, for example
ACCNO for account number, and a line counter. There can be up to thirteen lines
of help information for each field, including the title. A routine is performed, which
uses this key field to read the lines of help information from the file and copy them
to the HELPtrmid TS queue.

If the user presses F1 while the cursor is not on a valid field for contextual help, the
key field is set to spaces. There is a special entry in the file with a key field of
spaces, which explains to the user how to update and access the help file.

When all the required lines of help information have been read this module returns
control to DFH0VHP.

96 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 10. CUA text model file and copybook descriptions

This chapter gives a brief description of the various files and copybooks used in the
CUA text model application programs.

File: DFH0FUS customer detail file
This is a VSAM KSDS consisting of records 227 bytes long with an 8-byte key
which is the customer account number. Each record maintains the details for a
particular customer, for example name and address.

File: DFH0FAI customer detail file - alternate index
This secondary index file points to DFH0FCUS, the customer detail file. Its key
field is the customer surname.

File: DFH0FHLP help pop-up data file
This is a VSAM KSDS consisting of records 38 bytes long with a key in positions 1
to 10.

The records in this file are used to build the text for a contextual help pop-up. The
key is made up of the field name from which contextual help was requested and a
line number. There can be up to 13 lines of text on each help pop-up. The field
name keys should match the field names in the DFH0BHT copybook. If the cursor
position does not correspond to one of these field names, text with blank field name
is retrieved from the file, explaining that no help information is available on the field
selected.

Copybook: DFH0BCR customer record layout
This copybook shows the detail fields that make up the customer records on the
DFH0FUS file. The field names are self-explanatory. The USERTERMID field is
used when an update function requires exclusive control of a record for a particular
terminal. This is one of several possible methods which can be used to maintain
update integrity.

The physical record is 227 bytes long but the layout is 228 bytes long. This is
because the copybook is used to write records to the RECDtrmid TS queue and the
last byte is used to identify the operation being performed on the record, and its
current status.

Copybook: DFH0BCA commarea
The commarea layout is the same across all modules. It is 200 bytes long with 61
bytes of filler at the end. The fields are detailed in Chapter 12, “Installing and
running the FILEA sample applications” on page 121. Included in the copybook
are fields that are used in most of the modules within the application, including the
required literals.

 Copyright IBM Corp. 1989,1999 97

Copybook: DFH0BFKT variable function key layout
This is an array of literals that are used to build the function key line for panels that
have different function keys available at different times. The panel identification
field is the key to this array.

Copybook: DFH0BFPD redefinition of file pull-down DSECT
This redefinition is necessary because the keywords GROUP and OCCURS are
incompatible when using BMS. The redefinition does not use any extra storage but
enables easier code manipulation by grouping similar fields.

It is important to note that any changes made to the file pull-down DSECT must be
propagated into this copybook to prevent DATACHECKs from occurring.

Copybook: DFH0BHPD redefinition of help pull-down DSECT
This redefinition is necessary because the keywords GROUP and OCCURS are
incompatible when using BMS. The redefinition does not use any extra storage but
enables easier code manipulation by grouping similar fields.

It is important to note that any changes made to the help pull-down DSECT must
be propagated into this copybook to prevent DATACHECKs from occurring.

Copybook: DFH0BHP redefinition of help pop-up
This is a redefinition of the contextual help pop-up DSECT. It is an array of 13
lines that are built from the DFH0FHLP file.

Copybook: DFH0BHT help file key table
This table contains the keywords that relate the cursor-detected fields to the text in
the DFH0FHLP file.

Copybook: DFH0BLST redefinition of the list base panel
This DSECT redefinition is used to build the customer detail lines on the list panel.

Copybook: DFH0BMSG application message table
This table contains all the error and warning messages used by the modules within
this application.

98 CICS Transaction Server for VSE/ESA Sample Applications Guide

Copybook: DFH0BRT program routing control table
This is a 3-dimensional table that controls the flow of the application from module to
module. The three dimensions are:

 1. Actions
 2. Base Panel
 3. Pull-down options.

Each action on the action bar has an entry in the table, within which there is an
entry for every base panel to identify the associated program for processing.
Within each base panel, the pull-down options show which program is to be used to
process the option and whether it results in a base panel (B), a pop-up (P), or a full
screen pop-up (F). If the program name is TURNDOFF, that particular program is
not available from the current base panel.

This table allows for new programs to be added and tested without changing any
code within the existing modules. It eliminates decision making from the application
as far as program routing is concerned.

If multiple objects were available, a fourth dimension called object could be added
to the table.

Copybook: DFH0BTSQ TS queue details
This copybook shows the layout of the items in the LISTtrmid TS queue and the
tracking entry in the RECDtrmid TS queue. The limit of 50 occurrences in the
tracking record is an application choice.

This list TS queue holds the details necessary to produce. the list panel selection
fields. It also holds details of the type and status of processing being performed
against each entry.

Copybook: DFH0BHR help text TS queue layout
This TS queue layout is used to pass the help data from the DFH0VLIO module to
the DFH0VHP module that displays the contextual help pop-up.

 Chapter 10. CUA text model file and copybook descriptions 99

100 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 11. CUA text model BMS maps

All the maps used in the CUA text model application are coded for minimum
function BMS, and also the CURSLOC function. To run this application on earlier
releases of CICS you would have to alter the cursor-sensing sections of the
application to use only the EIBCPOSN field for determining the cursor positions.

All base colors are initialized in the maps, together with any required emphasis, and
these are maintained by the application when it displays and removes pop-ups and
pull-downs.

All maps are defined with literal values in mixed case.

In addition to normal entry field variables, fields which require color and emphasis
attribute settings also require labels within the maps.

Any overlay pull-down or pop-up maps are sent to the screen with no ERASE
option on the SEND call. As mentioned previously, an overlay map is defined with
the unused area space filled. When the overlay map contains data entry fields, the
underlying base map information shows through if the fields are not initialized.
(This includes initializing any “stopper” fields.)

When you design a map to be overlaid on another, it is often impossible to
determine which base map will be underneath, because the user path is not
predefined by the application. Any fields in the base map which appear to the right
of the overlay (that is, to the right border of the overlay) have their color attributes
changed to the color of the overlay border. You can define the overlay map with a
reset character following the right border, with a de-emphasized color attribute best
suited to the bulk of the panels it overlays. This is a minor deviation from CUA but
it ensures that all fields displayed to the right of the overlay will be in a
de-emphasized color. Testing has shown that the user’s attention is focused on the
overlay window, and the disruption to the base map is minimal.

The application obtains the cursor position in a map by symbolic cursor positioning.
See the notes on “Moving the selection cursor” on page 15 for more information.

Some maps are redefined because the keywords GROUP and OCCURS are
mutually exclusive in BMS. You must exercise care whenever modifying any
redefined maps because the lengths must always match. A common cause of
PROG 402 errors at the terminal is a map altered out of line with its redefined
layout. This occurs mainly in the list panel area.

Warning and action messages are accompanied by an audible warning by using
the SEND CONTROL ALARM call.

The following diagrams show the base maps and field names prior to any
modification or attribute setting done by the programs.

 Copyright IBM Corp. 1989,1999 101

Map T1: map set DFH0T1 (primary panel to sample application)

à ð
 File Help
 --

T1 Customer Data File

 Message line 22 (75 characters)

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

Field
name

Map
position

Notes

T1FFLD 01,03 File action

T1HFLD 01,09 Help action

T1ID 03,02 Panel ID

T1TITLE 03,30 Panel title, initial cursor position

T1MSG 22,01 Message line

102 CICS Transaction Server for VSE/ESA Sample Applications Guide

Map LST: map set DFH0LST (list processing - base panel)

à ð
 File Help

 LST Customer List

Type one or more action codes then press Enter.

 I=Inquire U=Update D=Delete

Items to of

 More:
 Action Accnt. No Surname First Name

 _

 _

 _

 _

 _

 _

 _

 _

 Message line 22 (75 characters)

 FKA DEFINED FROM FKTABLE

á ñ

Field
name

Map
position

Notes

LSTFFLD 01,03 File action

LSTHFLD 01,09 Help action

LSTID 03,02 Panel ID

FROMITM 09,50 From item

TOITEM 09,59 To item

OFITEM 09,68 Of item

MORE 10,56 More

MOREM 10,62 Minus sign

MOREP 10,64 Plus sign

ACTION1 13,04 Action line 1, initial cursor position

ACCTNO1 13,16 Account number line 1

SNAME1 13,26 Surname line 1

FNAME1 13,47 First name line 1

ACTMSG1 13,68 Action message line 1

ACTION2 14,04 Action line 2

ACCTNO2 14,16 Account number line 2

SNAME2 14,26 Surname line 2

FNAME2 14,47 First name line 2

ACTMSG2 14,68 Action message line 2

ACTION3 15,04 Action line 3

ACCTNO3 15,16 Account number line 3

 Chapter 11. CUA text model BMS maps 103

Field
name

Map
position

Notes

SNAME3 15,26 Surname line 3

FNAME3 15,47 First name line 3

ACTMSG3 15,68 Action message line 3

ACTION4 16,04 Action line 4

ACCTNO4 16,16 Account number line 4

SNAME4 16,26 Surname line 4

FNAME4 16,47 First name line 4

ACTMSG4 16,68 Action message line 4

ACTION5 17,04 Action line 5

ACCTNO5 17,16 Account number line 5

SNAME5 17,26 Surname line 5

FNAME5 17,47 First name line 5

ACTMSG5 17,68 Action message line 5

ACTION6 18,04 Action line 6

ACCTNO6 18,16 Account number line 6

SNAME6 18,26 Surname line 6

FNAME6 18,47 First name line 6

ACTMSG6 18,68 Action message line 6

ACTION7 19,04 Action line 7

ACCTNO7 19,16 Account number line 7

SNAME7 19,26 Surname line 7

FNAME7 19,47 First name line 7

ACTMSG7 19,68 Action message line 7

ACTION8 20,04 Action line 8

ACCTNO8 20,16 Account number line 8

SNAME8 20,26 Surname line 8

FNAME8 20,47 First name line 8

ACTMSG8 20,68 Action message line 8

LSTMSG 22,01 Message line

LSTFKA 24,01 Function key line

104 CICS Transaction Server for VSE/ESA Sample Applications Guide

Map NEW: map set DFH0NEW (new customer record - base panel)

à ð
 File Help

 NEW New Customer

 Add the details then press Enter to validate the data. Then use the

 Save option in the File pull-down to store it.

Account Number : 99999999
Surname ____________________
First Name . . . ____________________
Address ______________________________

 Town ____________________
 County ____________________
 Postcode __________

Credit Limit . . ____
 Account Status . _
 Comments ______________________________

 Message line 22 (75 characters)

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

Field
name

Map
position

Notes

NEWFFLD 01,03 File action

NEWHFLD 01,09 Help action

NEWID 03,02 Panel ID

ACCNON1 08,21 Account number

SNAMEN1 09,21 Surname, initial cursor position

FNAMEN1 10,21 First name

ADDRN1 11,21 Address

TOWNN1 12,21 Town

COUNTN1 13,21 County

PCODEN1 14,21 Postcode

CRLIMN1 15,21 Credit limit

ACCSTN1 16,21 Account status

COMMN1 17,21 Comment line 1

COMMN2 18,21 Comment line 2

COMMN3 19,21 Comment line 3

NEWMSG 22,01 Message line

 Chapter 11. CUA text model BMS maps 105

Map BRW: map set DFH0BRW (browse customer details - base panel)

à ð
 File Help

 BRW Browse Customer

 Customer details

 Account Number :

Surname :

First Name . . :

Address :

 Town :

 County :

Post code . . . :

 Credit Limit . :

 Account Status :

 Comments . . . :

 Message line 22 (75 characters)

FKA DEFINED FROM FKTABLE

á ñ

Field
name

Map
position

Notes

BRWFFLD 01,03 File action

BRWHFLD 01,09 Help action

BRWID 03,02 Panel ID

BRWTITL 03,30 Panel title, initial cursor position

ACCNOB1 08,21 Account number

SNAMEB1 09,21 Surname

FNAMEB1 10,21 First name

ADDRB1 11,21 Address

TOWNB1 12,21 Town

COUNTB1 13,21 County

PCODEB1 14,21 Post code

CRLIMB1 15,21 Credit limit

ACCSTB1 16,21 Account status

COMMB1 17,21 Comment line 1

COMMB2 18,21 Comment line 2

COMMB3 19,21 Comment line 3

BRWMSG 22,01 Message line

BRWFKA 24,01 Function Key line

106 CICS Transaction Server for VSE/ESA Sample Applications Guide

Map UPD: map set DFH0UPD (update customer details - base panel)

à ð
 File Help

 UPD Update Customer

 Update the details then press Enter to validate the data. Then use the

 Save option in the File pull-down to store it.

 Account Number :

Surname ____________________
First Name . . . ____________________
Address ______________________________

 Town ____________________
 County ____________________
 Postcode __________

Credit Limit . . ____
 Account Status . _
 Comments ______________________________

 Message line 22 (75 characters)

 FKA DEFINED FROM FKTABLE

á ñ

Field
name

Map
position

Notes

UPDFFLD 01,03 File action

UPDHFLD 01,09 Help action

UPDID 03,03 Panel ID

ACCNOU1 08,21 Account number

SNAMEU1 09,21 Surname, initial cursor position

FNAMEU1 10,21 First name

ADDRU1 11,21 Address

TOWNU1 12,21 Town

COUNTU1 13,21 County

PCODEU1 14,21 Post code

CRLIMU1 15,21 Credit limit

ACCSTU1 16,21 Account status

COMMU1 17,21 Comment line 1

COMMU2 18,21 Comment line 2

COMMU3 19,21 Comment line 3

UPDMSG 22,01 Message line

UPDFKA 24,01 Function Key line

 Chapter 11. CUA text model BMS maps 107

Map DEL: map set DFH0DEL (Delete a customer record - base panel)

à ð
 File Help

 DEL Delete Customer

 Type the Account Number to be deleted then press Enter

Account Number . ________
Surname :

First Name . . :

Address :

 Town :

 County :

 Postcode . . . :

 Credit Limit . :

 Account Status :

 Comments . . . :

 Message line 22 (75 characters)

 FKA DEFINED FROM FKTABLE

á ñ

Field
name

Map
position

Notes

DELFFLD 01,03 File action

DELHFLD 01,09 Help action

DELID 03,02 Panel ID

DELTITL 03,30 Panel title

COLOND1 08,19 Colon

ACCNOD1 08,21 Account number, initial cursor position

SNAMED1 09,21 Surname

FNAMED1 10,21 First name

ADDRD1 11,21 Address

TOWND1 12,21 Town

COUNTD1 13,21 County

PCODED1 14,21 Postcode

CRLIMD1 15,21 Credit limit

ACCSTD1 16,21 Account status

COMMD1 17,21 Comment line 1

COMMD2 18,21 Comment line 2

COMMD3 19,21 Comment line 3

108 CICS Transaction Server for VSE/ESA Sample Applications Guide

Field
name

Map
position

Notes

DELMSG 22,01 Message line

DELFKA 24,01 Function key line

 Chapter 11. CUA text model BMS maps 109

Map FPD: map set DFH0FPD (file pull-down)

à ð
 File Help
 .------------------------------.

 | 1 1. New |

 | 2. Open for Browse... |

 | 3. Open for Update... |

 | 4. Save |

 | 5. Save as... |

 | 6. Delete |

 | 7. Print... |

 | 8. Exit F3 |
 '------------------------------'

 Message line 22 (75 characters)

á ñ

Field
name

Map
position

Notes

FPDFFLD 01,03 File action

FPDHFLD 01,09 Help action

FPDSEL 03,03 Selection field, initial cursor position

FPOPT1 03,07 Option 1 text

FPACT1 03,10 Action 1 text

FPOPT2 04,07 Option 2 text

FPACT2 04,10 Action 2 text

FPOPT3 05,07 Option 3 text

FPACT3 05,10 Action 3 text

FPOPT4 06,07 Option 4 text

FPACT4 06,10 Action 4 text

FPOPT5 07,07 Option 5 text

FPACT5 07,10 Action 5 text

FPOPT6 08,07 Option 6 text

FPACT6 08,10 Action 6 text

FPOPT7 09,07 Option 7 text

FPACT7 09,10 Action 7 text

FPOPT8 10,07 Option 8 text

FPACT8 10,10 Action 8 text

FPDMSG 22,01 Message line

110 CICS Transaction Server for VSE/ESA Sample Applications Guide

Map HPD: map set DFH0HPD (help pull-down)

à ð
 File Help
 .-------------------------.

| _ 1. Help for help... |
| 2. Extended help... |
| 3. Keys Help... |

| 4. Help Index... |

| 5. Tutorial... |

| 6. About... |

 '-------------------------'

 Message line 22 (75 characters)

á ñ

Field
name

Map
position

Notes

HPDFFLD 01,03 File action

HPDHFLD 01,09 Help action

HPDSEL 03,09 Selection field, initial cursor position

HPOPT1 03,13 Option 1 text

HPACT1 03,16 Action 1 text

HPOPT2 04,13 Option 2 text

HPACT2 04,16 Action 2 text

HPOPT3 05,13 Option 3 text

HPACT3 05,16 Action 3 text

HPOPT4 06,13 Option 4 text

HPACT4 06,16 Action 4 text

HPOPT5 07,13 Option 5 text

HPACT5 07,16 Action 5 text

HPOPT6 08,13 Option 6 text

HPACT6 08,16 Action 6 text

HPDMSG 22,01 Message line

 Chapter 11. CUA text model BMS maps 111

Map OPN: map set DFH0OPN (file-open pop-up)

à ð

 .--.

 | OPN Open for |

 | |

| Type a Customer surname or a range of account |

| numbers. The surname must be typed with an |

| initial capital, and an \ may follow the name |

| as a wild card. Then press Enter. |

 | |

| Customer Name . ____________________ |

| Range start . . ________ |

| Range stop . . ________ |

 | |

 | F1=Help F12=Cancel |

 '--'

 Message line 22 (75 characters)

á ñ

Field
name

Map
position

Notes

OPNMODE 06,41 Pop-up title

SNAMEO1 13,33 Surname, initial cursor position

RSTART 14,33 Range start

RSTOP 15,33 Range stop

OPNMSG 22,01 Message line

112 CICS Transaction Server for VSE/ESA Sample Applications Guide

Map PRT: map set DFH0PRT (print pop-up)

à ð

 .---.

 | PRT Print Options |

 | |

| An application would now typically ask for |

| any print requirements such as the printer |

| destination, number of copies, paper type, |

| paper size, etc. |

 | |

| Since installations will have different print |

| requirements, no attempt has been made to |

| continue the print function beyond this point. |

 | |

 | F12=Cancel |

 '---'

 Message line 22 (75 characters)

á ñ

Field
name

Map
position

Notes

PRTTITL 06,44 Pop-up title, initial cursor position

PRTMSG 22,01 Message line

 Chapter 11. CUA text model BMS maps 113

Map SAS: map set DFH0SAS (save changed customer record pop-up)

à ð

 .---.

 | SAS Save as |

 | |

| When you press Enter, the data on the |

| screen will be saved as the next available |

| account number which is: |

 | |

| Account Number ________ |

 | |

 | F1=Help F12=Cancel |

 '---'

 Message line 22 (75 characters)

á ñ

Field
name

Map
position

Notes

ACCNOS1 18,50 Account number, initial cursor position

SASMSG 22,01 Message line

114 CICS Transaction Server for VSE/ESA Sample Applications Guide

Map HPOP: map set DFH0HP (contextual help pop-up)

à ð

 .------------------------------.

| Help: Untitled |

 | |

| Relevant Help File wording.. |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | F12=Cancel |

 '------------------------------'

 Message line 22 (75 characters)

á ñ

Field
name

Map
position

Notes

HTITLE 04,49 Pop-up title

HLINE1 06,49 Help text line 1, initial cursor position

HLINE2 07,49 Help text line 2

HLINE3 08,49 Help text line 3

HLINE4 09,49 Help text line 4

HLINE5 10,49 Help text line 5

HLINE6 11,49 Help text line 6

HLINE7 12,49 Help text line 7

HLINE8 13,49 Help text line 8

HLINE9 14,49 Help text line 9

HLINE10 15,49 Help text line 10

HLINE11 16,49 Help text line 11

HLINE12 17,49 Help text line 12

HPMSG 22,01 Message line

 Chapter 11. CUA text model BMS maps 115

Map ABT: map set DFH0ABT (about the sample application pop-up)

à ð

 .---.

| ABT About Version 1.ð |

 | |

| IBM CICS/ESA CUA/BMS Sample Application |

 | |

| This pop-up displays copyright and ownership |

| information. This application follows CUA |

| document SC26-4583-ð dated December 1989. |

 | |

| (C) Copyright IBM Corporation 199ð. |

| All rights reserved |

 | |

 | F12=Cancel |

 '---'

 Message line 22 (75 characters)

á ñ

Field
name

Map
position

Notes

ABTTITL 06,43 Pop-up title, initial cursor position

ABTMSG 22,01 Message line

116 CICS Transaction Server for VSE/ESA Sample Applications Guide

Map HLP: map set DFH0HLP (the help stub full screen pop-up)

à ð
 .--.

 | HLP Help |

 | |

 | An application would implement help according to its requirements. The |

 | option you selected in the Help pull-down was followed by ellipses and |

 | therefore the user would expect a pop-up to follow. This panel is treated |

 | as a full screen pop-up for the purposes of the sample program. The |

 | following specific pop-ups could be implemented: |

 | |

 | 1. Help for Help - This information tells users how to get help and how |

 | to use the help facilities |

 | 2. Extended Help - This information tells users about the tasks that |

 | can be performed in the application panel |

 | 3. Keys Help - A list of the application keys and their assignments |

 | 4. Help Index - A list of the help information available for the |

 | application |

 | 5. Tutorial - Access to a tutorial if the application provides one |

 | 6. About - Access to the copyright and ownership information |

 | |

 | F12=Cancel |

 '--'

 Message line 22 (75 characters)

á ñ

Field
name

Map
position

Notes

HLPTITL 02,37 Panel title, initial cursor position

HLPMSG 22,03 Message line

 Chapter 11. CUA text model BMS maps 117

Map AB: map set DFH0AB (abend handling)

à ð
 File Help

 --

 ABEND CICS Abend

There is a problem with the application which cannot be handled by the

normal error procedures. Please report the following information to your

Systems Support Department.

Call Identifier : _ Characters 1-4 = Transaction

Characters 5-7 = Program name

Characters 8-9 = Program call number

Abend Code . . : EIBRESP Condition

Resource . . . : EIBRSRSCE being accessed

 Message line 22 (75 characters)

 F12=Exit to CICS

á ñ

Field
name

Map
position

Notes

ABID 03,02 Panel ID

ABTITLE 03,33 Panel title

ABCALL 11,21 Call identifier, initial cursor position

ABCODE 15,21 Abend code

ABRSRCE 17,21 Resource

ABMSG 22,01 Message line

ABFKA 24,01 Function key line

118 CICS Transaction Server for VSE/ESA Sample Applications Guide

Part 2. FILEA sample applications

This part of the book describes the FILEA sample applications. There are four sets
of command-level application programs which operate on FILEA, one in each of the
programming languages Assembler, C/370, VS COBOL II, and PL/I. Each set
comprises six programs:

 � Operator instruction
 � Inquiry/update
 � Browse
 � Order entry
� Order entry queue print
� Low balance report.

These samples are provided as an Installation Verification Procedure (IVP). You
should run them as soon as you bring up a new system. They serve as a useful
test of whether you have successfully initialized a basic CICS system.

The programs were written prior to the publication of Common User Access (CUA)
guidelines, but can be used as a basis for developing your own application
programs.

This part of the book contains the following chapters:

� Chapter 12, “Installing and running the FILEA sample applications” on
page 121

� Chapter 13, “FILEA sample application program descriptions” on page 125
� Chapter 14, “FILEA sample application file description” on page 131
� Chapter 15, “FILEA sample application BMS maps” on page 133.

 Copyright IBM Corp. 1989,1999 119

120 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 12. Installing and running the FILEA sample
applications

The resource definitions supporting the FILEA sample applications are provided in
the CICS system definition file (CSD).

The applications are defined in the CSD groups generated by the INITIALIZE
command of the CSD utility program, DFHCSDUP. For a list of the application
groups in the CSD, and their contents, see the CICS Transaction Server for
VSE/ESA Resource Definition Guide. Note that the groups of sample resource
definitions are not included in the IBM-defined group list, DFHLIST. This means
that, if you start CICS with GRPLIST=DFHLIST, you must install the sample groups
using the CEDA INSTALL command before you can run any of the sample
transactions.

The CICS resource table definitions you need to run these sample applications are
provided in the following pregenerated sample control tables:

� DFHDCT2$, the sample destination control table, contains definitions for LOGA
and L86O, two transient data queues.

� DFHTCT5$, the sample terminal control table, contains only the definitions for
the sequential devices (CARDIN and PRINTER) needed to run the batch IVP,
DFHIVPBT. Use CEDA to define the L86O printer, needed by the FILEA order
entry print program, as a VTAM terminal.

You do not need to sign on (using CESN) to CICS in order to use the FILEA
sample application programs. However, you should sign on, using CESN, with
authority to use:

� The CEDF transaction if you want to run the sample programs under EDF, to
test the CICS execution diagnostic facility

� The CECI transaction, if you want to access the application resources using the
command level interpreter.

 Copyright IBM Corp. 1989,1999 121

Installing the sample groups
The transaction and program definitions for the sample applications are provided in
the assembler language, C, COBOL, and PL/I group definitions in the CSD. Install
these groups using the CEDA INSTALL command before trying to run any
applications. The CEDA commands to install the sample groups are shown in
Table 4.

Note: The FILEA file resource definition is in a separate group so that you can
install the four language versions of the FILEA sample applications in the
same run. If the file definition was in each of the FILEA sample application
groups, only the first INSTALL GROUP would succeed, and the second and
subsequent install commands for a group containing FILEA would then fail
because of the installed status of FILEA.

As an alternative to installing groups using CEDA, you may prefer to modify the list
of groups used in your GRPLIST startup parameter, so that they are automatically
installed at CICS initialization. For details of the CEDA commands for creating and
copying lists of groups, see the CICS Transaction Server for VSE/ESA Resource
Definition Guide manual.

Table 4. CEDA commands to install the sample groups

CEDA command Description of resource definition

INSTALL GROUP(DFH$AFLA) The assembler versions of the FILEA sample
application programs

INSTALL GROUP(DFH$DFLA) The C versions of the FILEA sample
application programs

INSTALL GROUP(DFH$CFLA) The COBOL versions of the FILEA sample
application programs

INSTALL GROUP(DFH$PFLA) The PL/I versions of the FILEA sample
application programs

INSTALL GROUP(DFH$FILA) The FILEA file resource definition (see note
below)

 Language considerations
The only sample applications provided as pregenerated load modules ready for use
are those written in assembler language. The assembler language sample maps
are also provided ready to execute. These are supplied in PRD1.BASE, and all
module names commence with DFH$.

However, the C, COBOL, and PL/I samples are provided in source form only in
PRD1.BASE. Before you can run the C, COBOL, or PL/I programs, you must first
assemble the maps and compile the programs for execution. The maps can be
assembled and link-edited using the CICS-supplied procedure, DFHMAPS. Note
that the map source member names are not the same as the map names defined
in the programs. This allows you to store the symbolic description maps in the
same library as the source member.

122 CICS Transaction Server for VSE/ESA Sample Applications Guide

If you use DFHMAPS (sample JCL supplied) to prepare the BMS map sets needed
for the sample programs, you must update the JCL with the name of the source
file, map and library. Include the library in the libdef statement of your CICS JCL.

Some language considerations
You need LE/370 to compile the C, COBOL, and PL/I versions of the FILEA
sample.

Running the sample applications
Once CICS is running, type the operator instruction needed for your language on to
a clear screen and press the enter key. The operator instruction transaction
identifier invokes the “Operator instruction” sample program, which is a short
program that produces a menu containing the transaction identifiers for two of the
other sample programs, namely “Inquiry/Update” and “Browse”.

If you clear the screen, remember to reenter the transaction identifier, because no
data is accepted from an unformatted screen.

You do not need to sign on (using CESN) to CICS in order to use the sample
application programs. However, you should sign on, using CESN, with authority to
use:

� The CEDF transaction if you want to run the sample programs under EDF, to
test the CICS execution diagnostic facility

� The CECI transaction, if you want to access the application resources using the
command level interpreter.

From within the operator menu, you can invoke any of the transactions detailed in
Table 5, by entering the four-character transaction identifier and the six-digit
account number in the fields highlighted in the bottom line of the display.

These transaction identifiers give you access to the inquiry, add, and update
functions of the “Inquiry/Update” program, and access to the “Browse” program.

Table 5. Sample programs and their identifiers

Language

Transaction identifiers

Operator
instruction

File inquiry File browse File add File update

Assembler AMNU and
NUMBER

AINQ and
NUMBER

ABRW and
NUMBER

AADD and
NUMBER

AUPD and
NUMBER

COBOL MENU and
NUMBER

INQY and
NUMBER

BRWS and
NUMBER

ADDS and
NUMBER

UPDT and
NUMBER

PL/I PMNU and
NUMBER

PINQ and
NUMBER

PBRW and
NUMBER

PADD and
NUMBER

PUPD and
NUMBER

C/370 DMNU and
NUMBER

DINQ and
NUMBER

DBRW and
NUMBER

DADD and
NUMBER

DUPD and
NUMBER

 Chapter 12. Installing and running the FILEA sample applications 123

Order entry and order entry queue print samples
You can invoke the three remaining sample programs “Order entry”, “Order entry
queue print”, and “Low balance report” separately by entering their transaction
identifiers (as shown in Table 6) on to a clear screen.

Table 6. Sample programs and their identifiers

Language

Transaction identifiers

Order entry Order entry queue print Low balance report

Assembler AORD AORQ AREP

COBOL OREN OREQ REPT

PL/I PORD PORQ PREP

C/370 DORD DORQ DREP

To run the Order entry queue print sample, you must have defined the L86O and
LOGA transient data queues (TDQs). You can define a display terminal to receive
the output from the L86O queue. First, find out the termtype for your display (see
“Switching off uppercase translation at the terminal level” on page 65 for details of
how to do this). You can then use the CEDA transaction to define the L86O as a
terminal of the relevant termtype, with a suitable display address.

124 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 13. FILEA sample application program descriptions

The sample programs described in this chapter are included, in the CICS
distribution tape, in both source and processable form for assembler language, and
in source form only for COBOL, PL/I, and C. Chapter 12, “Installing and running
the FILEA sample applications” on page 121 describes how these sample
programs, and associated resources, can be defined to CICS.

This chapter describes six CICS sample application programs, written in assembler
language, COBOL, PL/I, and C, as follows:

 � Operator instruction

 � Inquiry/update

 � Browse

 � Order entry

� Order entry queue print

� Low balance report.

These programs show basic applications (such as inquire, browse, add, and
update) that can serve as a framework for your installation’s first programs. Each
program has a short description of what the program does, a listing of its source
code, and a series of program notes. Numbered coding lines in the source listing
correspond to the numbered program notes. In COBOL, the programs contain
COPY statements coded according to the 1968 COBOL standard.

These sample programs are for use with the IBM 3270 Information Display System
and were written prior to the publication of Common User Access guidelines.

Operator instruction sample program (3270)
The instruction program displays a map containing operator instructions. This map
lists some of the sample application programs provided for the programming
language being used, and the transaction identifiers that can be used to invoke
them. To initiate the browse, add, update, or inquiry programs, the appropriate
transaction identifier must be entered on the menu map.

The program names, map names, and transaction identifiers for this function are:

Language Program name Map names Trans. Id

Assembler DFH$AMNU DFH$AGA AMNU

COBOL DFH0CMNU DFH0CGA MENU

PL/I DFH$PMNU DFH$PGA PMNU

C/370 DFH$DMNU DFH$DGA DMNU

 Copyright IBM Corp. 1989,1999 125

Inquiry/update sample program (3270)
The inquiry/update sample program lets you make an inquiry about, add to, or
update records in a file. You can select one of these actions by entering the
appropriate transaction identifier (see Table 5 on page 123) in the menu that is
displayed when you start operations by entering the operator instruction.

To make an inquiry, enter the transaction identifier for the inquiry transaction, and
an account number into the menu. The program maps in the account number and
reads the record from FILEA. The required fields from the file area, and a title
“FILE INQUIRY” are moved to the map DSECT, containing the record fields, and
are displayed at your screen.

The program names, map names, and transaction identifiers for this function are:

To add a record, enter the add transaction identifier (see Table 5 on page 123)
and the account number into the menu. The account number and a title “FILE
ADD” are moved to the map area of the map DSECT, containing empty data fields.
This is displayed at your screen. The data fields entered are mapped into the map
DSECT and moved to the file record area which is then written to FILEA. The
addition is recorded on an update log (LOGA), which is a transient data queue.
The operator instruction screen is displayed with the message “RECORD ADDED.”

To update a record, enter the relevant transaction (see Table 5 on page 123) and
the account number into the menu, as before. The program reads and displays the
requested FILEA record. Modified data fields are mapped in to the map area
DSECT and edited. The sample program only suggests the type of editing you
might want to do. You should insert editing steps needed to ensure valid changes
to the file. Those fields which have been changed are moved to the data record
and the record is rewritten to FILEA. The update is recorded on LOGA. The
message “RECORD UPDATED” is moved to the DSECT for the relevant map, the
operator instruction menu map, which is then displayed at your screen.

This program is an example of pseudoconversational programming, in which control
is returned to CICS together with a transaction identifier whenever a response is
requested from the operator. Associated with each return of control to CICS is a
storage area containing details associated with the previous invocation of this
transaction.

Language Program name Map names Trans. Id

Assembler DFH$AALL DFH$AGA,DFH$AGB AINQ,AADD,AUPD

COBOL DFH0CALL DFH0CGA,DFH0CGB INQY,ADDS,UPDT

PL/I DFH$PALL DFH$PGA,DFH$PGB PINQ,PADD,PUPD

C/370 DFH$DALL DFH$DGA,DFH$DGB DINQ,DADD,DUPD

Browse sample program (3270)
The browse program sequentially retrieves a page or set of records for display,
starting at a point in a file specified by the terminal operator.

To start a browse, type the transaction identifier (see Table 5 on page 123) and an
account number into the menu and press the Enter key. If you omit the account
number, browsing begins at the start of the file. Pressing the PF1 key or typing F

126 CICS Transaction Server for VSE/ESA Sample Applications Guide

causes retrieval of the next page or paging forward. If you want to reexamine the
previous records displayed, press PF2 or type B. This lets you page backward.

The browse program uses READNEXT to page forward to the end of the file and
READPREV to page backward to the start of the file.

The program names, map names, and transaction identifiers for this function are:

Language Program name Map names Trans. Id

Assembler DFH$ABRW DFH$AGA,DFH$AGC ABRW

COBOL DFH0CBRW DFH0CGA,DFH0CGC BRWS

PL/I DFH$PBRW DFH$PGA,DFH$PGC PBRW

C/370 DFH$DBRW DFH$DGA,DFH$DGC DBRW

Order entry sample program (3270)
The order entry sample application program provides a data entry facility for
customer orders for parts from a warehouse. Orders are recorded on a transient
data queue that is defined so as to start the order entry queue print transaction
automatically when a fixed number of orders have been accumulated. The queue
print transaction sends the orders to a printer terminal at the warehouse.

To begin order entry, type the transaction identifier (see Table 6 on page 124) on
to a blank screen and press ENTER.

The program names, maps, and transaction identifiers for this function are:

The order entry program displays the map on the screen, as shown above,
requesting the operator to enter order details, that is, customer number, part
number, and the quantity of that part required. The customer number must be
valid, that is, it must exist on FILEA. The order details are mapped in and checked;
an invalid order is redisplayed for correction. When valid, an order is written to the
transient data queue L86O and the order entry screen is redisplayed ready for the
next order to be entered. If CLEAR is pressed the order entry program terminates.

L86O, the name of the transient data queue, is also the name of the terminal where
the order entry queue print transaction is to be triggered when the number of items
on the queue reaches 30. A definition of the transient data queue is included in the
sample destination control table listed in the CICS Transaction Server for VSE/ESA
System Definition Guide. Note that if you are using COBOL, PL/I, or C, the
TRANSID specified in the DCT entry for L86O must be changed from AORQ to the
transaction identifier so that your language program can be triggered.

Language Program name Map names Trans. Id

Assembler DFH$AREN DFH$AGK AORD

COBOL DFH0CREN DFH0CGK OREN

PL/I DFH$PREN DFH$PGK PORD

C/370 DFH$DREN DFH$DGK DORD

 Chapter 13. FILEA sample application program descriptions 127

The trigger level may be changed using the CEMT command, as follows:

CEMT SET QUEUE(L86O) TRIGGER(n)

where n is the destination trigger level (any integer from 0 through 32767).

Order entry queue print sample program (3270)
The order entry queue print sample program sends customer orders to a printer
terminal at the warehouse. The order entry sample program, described earlier,
records customer orders on a transient data queue that is read by this program.

The queue print transaction can be invoked in one of three ways:

1. You can type the transaction identifier (see Table 6 on page 124) on to a clear
screen. The program finds that the terminal identifier is not L86O and issues a
START command to begin printing in one hour. The message “PROCESSING
COMPLETED” is displayed and your terminal is available for other work.

2. One hour after you enter this transaction identifier the queue print transaction is
automatically invoked by CICS interval control. In this case the terminal
identifier, specified by the START, is L86O so the program prints the orders at
the warehouse.

3. The queue print transaction is “triggered” when the number of items (customer
orders) on the transient data queue reaches 30. The trigger level is specified
in the destination control table (DCT) entry for L86O. In this case the terminal
identifier is the same as the queue name (L86O) and the program prints the
orders. Note that if you are using PL/I, COBOL, or C, the TRANSID specified
in the DCT entry for L86O must be changed from AORQ to the transaction
identifier for the language of your program to be triggered. The trigger level
may be changed using the command:

CEMT SET QUEUE(L86O) TRIGGER(n)

When invoked with a terminal identifier of L86O, the program reads each order,
checks the customer’s credit, and either prints the order at the warehouse or writes
the rejected order to LOGA, the same transient data queue as used by the
inquiry/update sample program. When all the orders have been processed, or if
there were no orders to process, the message “ORDER QUEUE IS EMPTY” is
printed at the warehouse.

The program names, map names, and transaction identifiers for this function are:

Language Program name Map names Trans. Id

Assembler DFH$ACOM DFH$AGL AORQ

COBOL DFH0CCOM DFH0CGL OREQ

PL/I DFH$PCOM DFH$PGL PORQ

C/370 DFH$DCOM DFH$DGL DORQ

128 CICS Transaction Server for VSE/ESA Sample Applications Guide

Low balance report sample program (3270)
The low balance report sample program produces a report that lists all entries in
the data set FILEA for which the amount is less than or equal to $50.00.

The program illustrates page-building techniques and the use of the terminal paging
facilities of BMS.

The transaction is invoked by entering the transaction identifier (see Table 6 on
page 124) on to a clear screen. The program does a sequential scan through the
file, selecting each entry that obeys the search criteria.

The program names, map names, and transaction identifiers for this function are:

The pages are built from four maps that comprise the map set as described in the
table above, using the paging option so that the data is not displayed immediately
but, instead, is stored for later retrieval. The HEADING map is inserted at the head
of each page. This detail map is written repeatedly until the OVERFLOW condition
occurs. The FOOTING map is then written at the foot of the page and the
HEADING map written at the top of the next page. The command to write the
detail map that caused overflow is then repeated. When all the data has been
written the FINAL map is written at the bottom of the last page and the transaction
terminated.

The terminal operator then enters paging commands to display the data, clearing
the screen before entering each paging command.

The program illustrates page-building techniques and use of the terminal paging
facilities of BMS. The following paging commands are defined in the sample
system initialization tables:

PGRET=P/

PGPURGE=T/

PGCOPY=C/

PGCHAIN=X/

Language Program name Map names Trans. Id

Assembler DFH$AREP DFH$AGD AREP

COBOL DFH0CREP DFH0CGD REPT

PL/I DFH$PREP DFH$PGD PREP

C/370 DFH$DREP DFH$DGD DREP

 Chapter 13. FILEA sample application program descriptions 129

130 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 14. FILEA sample application file description

The sample programs operate using a VSAM file, known as FILEA, consisting of
records containing details of individual customer accounts. This file must first be
defined using the VSAM utility, IDCAMS. DFH$FAIN in PRD1.BASE contains the
JCL needed to create and load the included data for this file. After the load, you
will find that the file consists of records containing details of individual bank
accounts, and the record key is the six-digit account number. The accounts on the
file include account numbers 100000, 111111, 200000, 222222, 300000, 333333,
400000, 444444, 500000, 555555, 600000, 666666, 700000, 777777, 800000,
888888, 900000, and 999999.

The JCL statements assume that the VSAM user catalog already exists.

The FILEA VSAM file is also used in the Intercommunication sample applications.

 Copyright IBM Corp. 1989,1999 131

132 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 15. FILEA sample application BMS maps

The sample BMS maps include examples of how the COLOR, EXTATT, and
HILIGHT attributes are specified in the map definition macros. However, because
of production limitations, the associated screen layouts do not show you all the
effects of these attributes.

You can add attributes without changing the application program by specifying
EXTATT=MAPONLY in the DFHMSD map set definition macro. If you include an
attribute that specifies a facility not available at the terminal, it is ignored.

The names of the map source members in PRD1.BASE for the FILEA sample
programs are not the same as the map names defined in the programs. This
allows you to store the symbolic description maps in the same library as the source
member.

The sixth letter is always “M” in the map source member name, and ”G” in the map
names specified in the application programs. For example, the maps used in the
update sample programs are named as follows:

Language

Program name

Map names
in program

Source map
names

Assembler DFH$AALL DFH$AGA, DFH$AGB DFH$AMA, DFH$AMB

COBOL DFH0CALL DFH0CGA, DFH0CGB DFH0CMA, DFH0CMB

PL/I DFH$PALL DFH$PGA, DFH$PGB DFH$PMA, DFH$PMB

C/370 DFH$DALL DFH$DGA, DFH$DGB DFH$DMA, DFH$DMB

 Copyright IBM Corp. 1989,1999 133

134 CICS Transaction Server for VSE/ESA Sample Applications Guide

Part 3. Intercommunication sample applications

This part of the book describes the CICS-supplied application programs that
illustrate the use of distributed transaction processing and asynchronous processing
on APPC and LUTYPE6.1 links.

The four applications in this group of samples, all of which are written in assembler
language, are:

1. Transferring a temporary storage queue from a local CICS system to a remote
CICS system, using distributed transaction processing and APPC protocols.

2. Browsing a remote file, using distributed transaction processing and APPC
protocols.

3. Retrieving a record from a remote temporary storage queue, using
asynchronous processing. This sample can be used with APPC and
LUTYPE6.1 links.

4. Enabling a CICS-to-remote LUTYPE6.1 system conversation. LUTYPE6.1 links
must be used for this sample.

This part of the book contains the following chapter:

� Chapter 16, “The intercommunication sample applications” on page 137.

 Copyright IBM Corp. 1989,1999 135

136 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 16. The intercommunication sample applications

The intercommunication sample programs and their associated BMS mapsets are
provided in both source and object form on the CICS distribution volume.

Intercommunication sample programs: The source modules have the same names
as their equivalent object modules, and can be found in PRD1.BASE. For all the
sample programs, the transaction name is the last four characters of the module
name.

Intercommunication sample mapsets: The source modules, the symbolic
description maps, and the physical maps can be found in PRD1.BASE. All the
BMS mapset source modules have names of the form DFH$IMx. The symbolic
description map and the physical map generated from DFH$IMx are both named
DFH$IGx.

Resource definition: All the transaction, program, and mapset definitions for the
Intercommunication sample programs are provided in the CICS-supplied group
DFH$ICOM.

The names of the source modules for the sample programs and mapsets are
shown in Table 7.

Table 7. Summary of sample application programs

Sample Description Source
modules

Module description

 1 Transfer of a
temporary storage
queue to a remote
CICS system.

DFH$IQXL
DFH$IQXR
DFH$IMX

Local transaction
Remote transaction
BMS mapset DFH$IGX

 2 Browsing a remote
file.

DFH$IFBL
DFH$IFBR
DFH$IMB

Local transaction
Remote transaction
BMS mapset DFH$IGB

 3 Retrieval of a record
from a remote
temporary storage
queue.

DFH$IQRL
DFH$IQRR
DFH$IQRD
DFH$IM1
DFH$IM2

Local request transaction
Remote retrieve transaction
Local display transaction
BMS mapset DFH$IG1
BMS mapset DFH$IG2

 4 CICS-to-CICS
conversation

DFH$ICIC
DFH$IMC

Local/remote transaction
BMS mapset DFH$IGC

 Copyright IBM Corp. 1989,1999 137

Intercommunication sample 1 – temporary storage queue transfer
This sample illustrates the use of distributed transaction processing to transmit a
temporary storage queue to a remote system. It consists of a front-end transaction
(DFH$IQXL), a back-end transaction (DFH$IQXR), and a BMS mapset (DFH$IMX)
that is used by the front-end transaction.

The front-end transaction is invoked by the transaction code IQXL, and displays the
following menu at the user’s terminal:

à ð

CICS-CICS QUEUE TRANSFER

SAMPLE PROGRAM MAP

 \\\\\\\\\\\\\\\\\\\\\\\\\\

LOCAL TS Q NAME ...

REMOTE TS Q NAME .. REMOTEQ

REMOTE SYSTEM ID ..

TYPE IN VALUES, THEN PRESS ENTER

OR HIT "PF3" TO TERMINATE.

á ñ

The displayed menu has three input fields:

LOCAL TS Q NAME
Specifies the name of the local temporary storage queue that is to be
transferred to the remote system.

If this field is left blank, the front-end transaction builds for itself a small
(5 records) temporary storage queue to transfer to the remote system.

REMOTE TS Q NAME
Specifies the name that the transferred queue is to be given on the remote
system.

The menu supplies the default name REMOTEQ.

REMOTE SYSTEM ID
Specifies the name of the remote system.

This name must be the connection name of an APPC link.

The front-end transaction initiates the back-end transaction and transmits the
temporary storage records for writing on the remote queue.

The user is informed of data input errors, and also of the progress of the queue
transfer operation. The local temporary storage queue is deleted after successful
completion.

Figure 8 on page 139 shows the overall flow of the queue-transfer sample.

138 CICS Transaction Server for VSE/ESA Sample Applications Guide

 Local transaction Remote transaction
 (front-end) (back-end)

1. . . . Get user requirements

2. . . . Create TS queue if needed

3. . . . ALLOCATE SYSID()

 (MVC ATCHSESS,EIBRSRCE)

4. . . . CONNECT PROCESS

5. . . . SEND remote queue name =====> RECEIVE queue name

6. . . . SEND record (loop) =====> RECEIVE record (loop)

7. . . . SYNCPOINT =====>

 <===== SYNCPOINT

8. . . . FREE SESSION RETURN

9. . . . DELETE TS queue

 RETURN

1. The user’s input values are received and are validated.

2. If a local queue name is not supplied, a queue is constructed.

3. The front-end transaction allocates a conversation and acquires
its name from the EIB.

4. The back-end transaction is initiated, using a SYNCLEVEL of
2 to allow CICS syncpointing.

5. The name of the remote queue is transmitted to the back-end
transaction.

6. Using consecutive sends, the front-end transaction sends one
queue record at a time to the back-end transaction, until the
end of the queue is reached.

The back-end transaction receives one record at a time and
writes it to the temporary storage queue.
The end of the transfer is indicated by the EIB settings.

7. When all the records have been sent, the front-end transaction
issues a syncpoint.
The back-end transaction, on checking the EIB, does the same.

8. The front-end transaction frees the session.
The back-end transaction terminates (thus freeing the session) when
the EIB shows FREE.

9. Finally, the front-end transaction deletes the local temporary
storage queue and terminates.

Figure 8. Sample 1: Temporary storage queue transfer - overall design

 Chapter 16. The intercommunication sample applications 139

Intercommunication sample 2 – remote file browse
This intercommunication sample illustrates the use of distributed transaction
processing to browse a remote file. It consists of a front-end transaction
(DFH$IFBL), a back-end transaction (DFH$IFBR), and a BMS mapset (DFH$IMB)
for the front-end transaction.

The front-end transaction is invoked by the transaction code IFBL, and displays the
following menu at the user’s terminal:

à ð

CICS-CICS REMOTE FILE BROWSE

SAMPLE PROGRAM MAP

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\

6 DIGIT STBR KEY ..

REM DATASET NAME ..

REMOTE SYSTEM ID ..

TYPE IN VALUES, THEN PRESS ENTER

OR HIT "PF3" TO TERMINATE.

á ñ

The displayed menu has three input fields:

6 DIGIT STBR KEY
Specifies the key of the record at which the browse is to start.

REM DATASET NAME
Specifies the name of the data set that is to be browsed.

REMOTE SYSTEM ID
Specifies the name of the remote system. This name can be the connection
name of an APPC link, an LUTYPE6.1 link, or an MRO link.

Initially, the file is browsed forwards, and four records from the remote file are
displayed. Thereafter, the user can choose to browse forwards (PF8), browse
backwards (PF7), or terminate the browse (PF3).

Figure 9 on page 141 shows the overall flow of the file browse sample.

140 CICS Transaction Server for VSE/ESA Sample Applications Guide

 Local transaction Remote transaction
 (front-end) (back-end)

 1. . . . Get user requirements

 2. . . . ALLOCATE SYSID()

 (MVC ATCHSESS,EIBRSRCE)

 3. . . . CONVERSE =====> RECEIVE

 4. . . . Process and buffer records

 5. . . . <===== SEND

 6. . . . RETURN

 7. . . . FREE conversation

 8. . . . Process input and

send to user's screen

 9. . . . If more browsing go to 2

1ð. . . . RETURN

1. The user's input values are received and are validated.

2. The front-end transaction allocates a conversation and acquires
its name from the EIB.

3. The data set name, the record key, and the browse direction are
sent to the back-end transaction.

Note that the CONVERSE command is equivalent to SEND, WAIT,
RECEIVE. This is a “migration mode” command.
No CONNECT PROCESS command is issued; instead, the remote
transaction identifier is sent in the first four bytes of
the message.

4. The back-end transaction retrieves four records from the data set
and places them in a buffer.

5. The back-end transaction sends the buffered records to the
front-end transaction, together with the key of the last record
that was retrieved.

6. The back-end transaction terminates, thereby freeing the session.

7. The front-end transaction frees the session after receiving the
data.

8. The front-end transaction unblocks the records and sends them (or
possibly an error message) to the user.

9. If the user wants to browse more records (PF7 or PF8), the process
is repeated from step 2.

10. Otherwise, the front-end transaction terminates.

Figure 9. Sample 2: remote file browse - overall design

 Chapter 16. The intercommunication sample applications 141

Intercommunication sample 3 – remote record retrieval
This intercommunication sample illustrates the use of asynchronous processing to
retrieve a single record from a remote temporary storage queue. It consists of a
local transaction (IQRL) to send the request to the remote system, a remote
transaction (IQRR) to retrieve the record and return it to the local system, and a
local transaction (IQRD) to receive the record and display it at the user terminal.

The remote temporary storage queue is assumed to consist of records that have
unique user-defined keys in their first six bytes. If you want to run this sample, you
will have to create a temporary storage queue of this form on the remote system.

The request transaction is invoked by the transaction code IQRL, and displays the
following menu at the user’s terminal:

à ð

CICS-CICS RECORD RETRIEVAL

SAMPLE PROGRAM MAP

 \\\\\\\\\\\\\\\\\\\\\\\\\\

KEY OF REC. REQD. .

REMOTE TS Q NAME ..

REMOTE SYSTEM ID ..

TYPE IN VALUES, THEN PRESS ENTER

OR HIT "PF3" TO TERMINATE.

á ñ

KEY OF REC REQD
Specifies the user-defined key (that is, the first six bytes of data) of the remote
temporary storage record.

REMOTE TS Q NAME
Specifies the name of the remote queue from which the record is to be
retrieved.

REMOTE SYSTEM ID
Specifies the name of the remote system.

This name can be the connection name of an APPC, an LUTYPE6.1 link, or an
MRO link.

142 CICS Transaction Server for VSE/ESA Sample Applications Guide

The local request transaction uses a START command to start the remote retrieve
transaction. The start request passes the name of the queue, the record number,
the return transaction identifier (IQRD), and the return terminal identifier (obtained
from the EIB).

It also passes the APPLID of the local CICS system. This enables the remote
transaction to find the SYSID of the system that issued the initial start request.
Because both the local and the remote transactions name a SYSID explicitly on
their START commands, neither of the systems requires a remote transaction
definition.

The remote transaction retrieves the required record, and passes it back to the
local system, again by means of a START command. This START command
names the local display transaction IQRD.

The local display transaction then displays the record at the user’s terminal.

 Chapter 16. The intercommunication sample applications 143

Intercommunication sample 4 – CICS to CICS conversation
The CICS-to-CICS synchronous sample application program allows a terminal
operator to enter a command on the screen and have that command transmitted to
a remote system for execution.

The front-end transaction is invoked by the transaction code ICIC, and displays the
following menu at the user’s terminal:

à ð

TYPE REMOTE SYSTEM ID AND COMMAND

REMOTE SYSTEM ID

 COMMAND

THEN PRESS ENTER TO CONTINUE, OR

CLEAR TO TERMINATE

á ñ

The program is able to converse with any application on a remote system that
sends output data either one line at a time or in multiple line format. The
CICS-supplied programs listed below have this capability; thus this example
provides the CICS system programmer with a simple test transaction that proves it
is easily possible to establish contact with a second, remote CICS system without
the need for any application program coding. A successful test of this sample
indicates, to the extent of the features actually being tested, that the system
network has been correctly set up and that the intersystem components of CICS to
allow distributed transaction processing are in order; failure indicates errors in setup
rather than in user programming.

At the start of the program, the operator is prompted to enter the name of the
remote system to be attached, and the actual command to be executed on the
remote system, which is entered just as if it were a local command. The program
can handle both single line output from the remote system and also output that
exceeds the terminal page size.

The message received from the remote system is assumed to be in SCS form, that
is, containing printable characters and new line symbols only. This is the default
output format for LU6 type terminals as produced by CICS-supplied programs such
as CSFE, CEMT, CEOT, or CEST.

144 CICS Transaction Server for VSE/ESA Sample Applications Guide

Source listing of sample 4, combined front-end and back-end
transaction (DFH$ICIC)

The numbers within this listing, 1), 2), and so on, refer to the program notes, which
can be found at the end of the listing.

TITLE 'DFH$ICIC - INTERCOMMUNICATION SAMPLE - CICS TO CICS OR \

 IMS CONVERSATION'

DFHEISTG DSECT

\ STORAGE AREA FOR EIB SESSION AND STATUS FLAGS

XDFEIFLG DS ðCL7

XSYNC DS C IF SET, SYNCPOINT MUST

\ BE EXECUTED

XFREE DS C IF SET, TERMINAL / LU

\ MUST BE FREED

XRECV DS C IF SET, RECEIVE MUST

\ BE EXECUTED

XSEND DS C RESERVED

\

XATT DS C IF SET, ATTACH HEADER

\ DATA EXISTS AND MAY BE

\ ACCESSED USING EXTRACT

XEOC DS C IF SET, END-OF-CHAIN

\ WAS RECEIVED WITH DATA

XFMH DS C IF SET, DATA PASSED TO

\ APPL'N CONTAINS FMH(S)

 COPY DFH$IGC COPY MAP

 COPY DFHAID

REMDATA DS 256D

ATCHSESS DS CL4

CONTROL DS ðCL6ð

SBA DS CL3

CDATA DS CL57

MESSAGE DS CL32

INLEN DS H

OUTLEN DS H

RESP DS F

NEWLINE EQU X'15'

 EJECT

DFH$ICIC CSECT

MAPFAIL XC MAPAI(MAPAE-MAPAI),MAPAI CLEAR MAP

 1) EXEC CICS SEND MAP('MAPA') MAPSET('DFH$IGC') \

ERASE MAPONLY WAIT RESP(RESP)

CLC RESP,DFHRESP(NORMAL) CHECK FOR NORMAL RESPONSE

 BNE ERROR1

 2) EXEC CICS RECEIVE MAP('MAPA') MAPSET('DFH$IGC') RESP(RESP)

CLI EIBAID,DFHCLEAR WAS CLEAR KEY PRESSED?

BE CLEAR ... YES, GO TO CLEAR

CLC RESP,DFHRESP(MAPFAIL) HAS THE MAP BEEN READ IN OK?

BE MAPFAIL ... NO, GO TO MAPFAIL

CLC RESP,DFHRESP(NORMAL) CHECK FOR NORMAL RESPONSE

 BNE ERROR1

Figure 10 (Part 1 of 4). Sample 4: CICS-to-CICS conversation - combined front-end and back-end transaction
(DFH$ICIC)

 Chapter 16. The intercommunication sample applications 145

 LA 8,DATAI

 MVC DATABL(3+L'DATABO),DATAL

 MVC OUTLEN,DATAL

 3) EXEC CICS SEND MAP('MAPB') MAPSET('DFH$IGC') \

WAIT ERASE RESP(RESP)

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

 4) EXEC CICS ALLOCATE SYSID(SYSIDI) RESP(RESP)

CLC RESP,DFHRESP(SYSIDERR) IS THE SYSTEM ID VALID?

BE SYSERR ... NO, GO TO SYSERR

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

 MVC ATCHSESS,EIBRSRCE

CONVERSE DS ðH

 MVC INLEN,=H'2ð48'

 5) EXEC CICS CONVERSE \

 SESSION(ATCHSESS) \

 FROM(ð(8)) \

 FROMLENGTH(OUTLEN) \

 INTO(REMDATA) \

 TOLENGTH(INLEN) \

 RESP(RESP)

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

MVC XDFEIFLG,EIBSYNC SAVE EIB VALUES

DATASENT DS ðH

 6) CLC INLEN,=H'ð' IF NULL RU SENT

BE TESTSYNC NOTHING TO SEND.

 LH 1,INLEN

LA 2,REMDATA(1) ADDR BYTE AFTER DATA

MVI ð(2),X'13' INSERT CURSOR HERE

 LA 1,1(,1)

 STH 1,INLEN

EXEC CICS SEND TEXT FROM(REMDATA) LENGTH(INLEN) \

 ACCUM RESP(RESP)

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

TESTSYNC DS ðH

 7) CLI XSYNC,X'FF'

 BNE TESTFREE

EXEC CICS SYNCPOINT RESP(RESP)

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

TESTFREE DS ðH

 8) CLI XFREE,X'FF'

 BNE TESTRECV

EXEC CICS SEND PAGE RETAIN RESP(RESP)

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

EXEC CICS RETURN

Figure 10 (Part 2 of 4). Sample 4: CICS-to-CICS conversation - combined front-end and back-end transaction
(DFH$ICIC)

146 CICS Transaction Server for VSE/ESA Sample Applications Guide

TESTRECV DS ðH

 9) CLI XRECV,X'FF'

 BNE SEND

 MVC INLEN,=H'2ð48'

EXEC CICS RECEIVE SESSION(ATCHSESS) INTO(REMDATA) \

 LENGTH(INLEN) RESP(RESP)

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

MVC XDFEIFLG,EIBSYNC SAVE EIB VALUES

 B DATASENT

SEND DS ðH

 1ð) EXEC CICS SEND PAGE RETAIN RESP(RESP)

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

 MVC OUTLEN,=H'6ð'

EXEC CICS RECEIVE INTO(CONTROL) LENGTH(OUTLEN) RESP(RESP)

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

 LH ð,OUTLEN

SH ð,=H'3' FOR LENGTH OF SBA

 LA 8,CDATA

 B CONVERSE

\

ERROR1 DS ðH

 MVC MESSAGE,ERRMSG

 B EXPLAIN

ERRMSG DC CL32'ERROR - TRANSACTION TERMINATED'

\

SYSERR DS ðH

 11) CLI EIBRCODE+1,12

 BE UNKNOWN

 CLI EIBRCODE+1,8

 BE OUTSERV

 CLI EIBRCODE+1,4

 BE NOTCTSE

NOLINK DS ðH

 12) MVC MESSAGE,LINKMSG

 MVC MESSAGE+28(4),SYSIDI

 B EXPLAIN

LINKMSG DC CL32'UNABLE TO ESTABLISH LINK TO '

\

UNKNOWN DS ðH

 13) MVC MESSAGE,UNKMSG

 MVC MESSAGE+12(4),SYSIDI

 B EXPLAIN

UNKMSG DC CL32'SYSTEM NAME IS NOT KNOWN '

Figure 10 (Part 3 of 4). Sample 4: CICS-to-CICS conversation - combined front-end and back-end transaction
(DFH$ICIC)

 Chapter 16. The intercommunication sample applications 147

OUTSERV DS ðH

 14) MVC MESSAGE,OUTSVMSG

 MVC MESSAGE+8(4),SYSIDI

 B EXPLAIN

OUTSVMSG DC CL32'LINK TO IS OUT OF SERVICE'

\

NOTCTSE DS ðH

 15) MVC MESSAGE,TCTMSG

 MVC MESSAGE(4),SYSIDI

 B EXPLAIN

TCTMSG DC CL32' IS NOT A SYSTEM NAME'

\

EXPLAIN DS ðH

EXEC CICS SEND FROM(MESSAGE) LENGTH(=H'32') \

ERASE WAIT RESP(RESP)

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

CLEAR DS ðH

EXEC CICS SEND CONTROL FREEKB RESP(RESP)

 CLC RESP,DFHRESP(NORMAL)

 BNE ERROR1

EXEC CICS RETURN

 END

Figure 10 (Part 4 of 4). Sample 4: CICS-to-CICS conversation - combined front-end and back-end transaction
(DFH$ICIC)

Program notes for DFH$ICIC
1. The screen is cleared, and the prompting map is displayed at the terminal.

2. The remote system name and command to be transmitted are mapped in.
Branches are taken on error or “terminate” conditions.

3. The screen is cleared again and the command entered by the operator is
displayed on the top line.

4. A session is now allocated naming the remote system only, and its name is
obtained from EIBRSRCE.

5. A CONVERSE command is now issued that sends the data entered by the
terminal operator to the specified remote system, then receives the resulting
response from that system. To enable the program to determine what action is
next expected of it, the contents of the EXEC interface block are examined;
thus the values therein must be retained. The SESSION option is used
because the application is requesting that an alternate facility be made
available to it. Note that, although it is permissible to build an attach header
and transmit it using the CONVERSE command, this action does not need to
be taken in this case because CICS assumes by default that the first four
characters of the transmitted data contain the transaction code.

148 CICS Transaction Server for VSE/ESA Sample Applications Guide

6. If the data length field for the RECEIVE component of the CONVERSE
command indicates that there is data to be handled, a logical message is built
using the BMS TEXT facility for subsequent sending to the screen. To ensure
that the terminal cursor is placed on the next available line for any further input,
the “Insert Cursor” control character is appended to the data stream.

7. The session-oriented information transmitted across the LU6 session by the
remote transaction must now be examined to determine what action should be
taken next. The “SYNCPOINT required” indicator in the EXEC interface block
is first tested and if need be the program issues its own SYNCPOINT
command.

8. If the EXEC interface block (EIB) indicates that the program should now free
the session, thereby denoting that the remote transaction has completed
successfully and has terminated the conversation, the built logical message is
sent to the screen using the RELEASE option of the SEND PAGE command,
which returns control direct to CICS and thus frees the session.

9. If the EXEC interface block (EIB) indicates that the application is to continue
receiving data from across the session, a further RECEIVE command is issued.

10. The indicators SYNCPOINT, FREE session, or RECEIVE do not apply, thus by
default the remote application has requested a further transmission from this
program. (In the case of the CICS-supplied programs named in the description
above, this would imply the receipt of a prompting message.) The program
therefore sends the logical message built to date, which includes the prompt, to
the terminal operator and receives a reply; a second CONVERSE command
can then be issued across the session. Note that the “Set Buffer Address”
control and the two buffer address bytes received from the terminal must be
bypassed before transmission across the link.

11. The SYSID error routine has been entered. To determine the exact cause of
the error, EIBRCODE must be examined, and an appropriate information
message sent to the operator.

12. Some kind of error exists that prevents the link between the two systems from
being established.

13. The remote system name given by the operator is not recognized.

14. The link to the remote system is out of service.

15. The system name given is recognized, but is not that for a remote system.

 Chapter 16. The intercommunication sample applications 149

150 CICS Transaction Server for VSE/ESA Sample Applications Guide

Part 4. BMS partition and transient data samples

Chapter 17. The BMS partition samples . 153

Chapter 18. The transient data sample (DFH$TDWT) 155

 Copyright IBM Corp. 1989,1999 151

152 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 17. The BMS partition samples

This part of the book describes the BMS partition samples in COBOL and PL/I.

Overlapping operator keystrokes
Sample programs are provided in COBOL and PL/I which illustrate overlapped
keystroking into two BMS partitions. The source programs are in the PRD1.BASE2

library and are named DFH0CPKO for COBOL, and DFH$PPKO for PL/I. (Contact
your system programmer for the name of this library as installed on your system.)

 Look-aside querying
Sample programs are provided in COBOL and PL/I that show overlapped
keystroking into one BMS partition while look-aside queries can be made using
another BMS partition. The source code for these programs is in the
CICS-supplied PRD1.BASE library2 and is named DFH0CPLA for COBOL and
DFH$PPLA for PL/I.

Installing the sample group
Install the group using the CEDA INSTALL GROUP (DFH$BMSP) command.

Table 8. Sample program

Language Program name Map names in
program

Source map
names

Partitionset

COBOL DFH0CPKO
DFH0CPLA

DFH0CGP DFH0CMP DFH0PS

PL/I DFH$PPKO
DFH$PPLA

DFH$PGP DFH¢PMP DFH$PS

Invoking the sample group
You can invoke the sample group by entering the transaction identifier on a clean
screen.

Table 9. Sample group and its identifier

Language

TRANSACTION

Keystroke overlap Lookaside query

COBOL XPKO XPLA

PL/I PPKO PPLA

2 This is the name of the library as supplied by IBM. Your installation may be using another name. Check with your systems
programmer

 Copyright IBM Corp. 1989,1999 153

154 CICS Transaction Server for VSE/ESA Sample Applications Guide

Chapter 18. The transient data sample (DFH$TDWT)

CICS provides a sample which prints messages on a local 3270 printer as they
occur. In the destination control table (DCT), the user can specify that messages
such as those from the abnormal condition program (DFHACP) and sign-on and
sign-off messages, should be sent to destinations defined in the DCT with
TYPE=INDIRECT. If these destinations are defined (by means of INDDEST) so
that they refer to an intrapartition destination with a transaction identifier and a
trigger level of 1, the receipt of a message will cause that transaction to be started.

The transaction will invoke the DFH$TDWT sample program, which prints the
message at a local terminal.

To use this sample, the CICS system must include automatic transaction initiation
and an intrapartition transient data set. The source code is provided in
CICS170.SAMPLIB, and the object code is provided in CICS170.LOADLIB.

Sample table entries for this technique are as follows:

DFHDCT TYPE=INDIRECT,DESTID=CSCS,INDDEST=LPRT

DFHDCT TYPE=INDIRECT,DESTID=CSTL,INDDEST=LPRT

DFHDCT TYPE=INDIRECT,DESTID=CSML,INDDEST=LPRT

DFHDCT TYPE=INTRA, TO AUTO INIT TASK

DESTID=LPRT, LOCAL 327ð PRINTER

 TRIGLEV=1,

 TRANSID=TDWT,

 DESTFAC=TERM

DFHPCT TYPE=ENTRY,

 TRANSID=TDWT,

 PROGRAM=DFH$TDWT

DFHPPT TYPE=ENTRY,

 PROGRAM=DFH$TDWT

DFHTCT TYPE=TERMINAL,

 TRMIDNT=LPRT,

 TRMTYPE=L3286

Note: The DESTID in the DCT TYPE=INTRA macro instruction and the TRMIDNT
in the TCT TYPE=TERMINAL macro instruction must be the same.

 Copyright IBM Corp. 1989,1999 155

156 CICS Transaction Server for VSE/ESA Sample Applications Guide

 Bibliography

CICS Transaction Server for VSE/ESA Release 1 library

Evaluation and planning

Release Guide GC33-1645
Migration Guide GC33-1646
Report Controller Planning Guide GC33-1941

General

Master Index SC33-1648
Trace Entries SC34-5556
User’s Handbook SC34-5555
Glossary (softcopy only) GC33-1649

Administration

System Definition Guide SC33-1651
Customization Guide SC33-1652
Resource Definition Guide SC33-1653
Operations and Utilities Guide SC33-1654
CICS-Supplied Transactions SC33-1655

Programming

Application Programming Guide SC33-1657
Application Programming Reference SC33-1658
Sample Applications Guide SC33-1713
Application Migration Aid Guide SC33-1943
System Programming Reference SC33-1659
Distributed Transaction Programming Guide SC33-1661
Front End Programming Interface User’s Guide SC33-1662

Diagnosis

Problem Determination Guide GC33-1663
Messages and Codes Vol 3 (softcopy only) SC33-6799
Diagnosis Reference LY33-6085
Data Areas LY33-6086
Supplementary Data Areas LY33-6087

Communication

Intercommunication Guide SC33-1665
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697

Special topics

Recovery and Restart Guide SC33-1666
Performance Guide SC33-1667
Shared Data Tables Guide SC33-1668
Security Guide SC33-1942
External CICS Interface SC33-1669
XRF Guide SC33-1671
Report Controller User’s Guide GC33-1940

CICS Clients

CICS Clients: Administration SC33-1792
CICS Universal Clients Version 3 for OS/2: Administration SC34-5450
CICS Universal Clients Version 3 for Windows: Administration SC34-5449
CICS Universal Clients Version 3 for AIX: Administration SC34-5348
CICS Universal Clients Version 3 for Solaris: Administration SC34-5451
CICS Family: OO programming in C++ for CICS Clients SC33-1923
CICS Family: OO programming in BASIC for CICS Clients SC33-1671
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway Version 3: Administration SC34-5448

 Copyright IBM Corp. 1989,1999 157

Books from VSE/ESA 2.4 base program libraries

VSE/ESA Version 2 Release 4

Book title Order number

Administration SC33-6705

Diagnosis Tools SC33-6614

Extended Addressability SC33-6621

Guide for Solving Problems SC33-6710

Guide to System Functions SC33-6711

Installation SC33-6704

Licensed Program Specification GC33-6700

Messages and Codes Volume 1 SC33-6796

Messages and Codes Volume 2 SC33-6798

Messages and Codes Volume 3 SC33-6799

Networking Support SC33-6708

Operation SC33-6706

Planning SC33-6703

Programming and Workstation Guide SC33-6709

System Control Statements SC33-6713

System Macro Reference SC33-6716

System Macro User’s Guide SC33-6715

System Upgrade and Service SC33-6702

System Utilities SC33-6717

TCP/IP User's Guide SC33-6601

Turbo Dispatcher Guide and Reference SC33-6797

Unattended Node Support SC33-6712

High-Level Assembler Language (HLASM)

Book title Order number

General Information GC26-8261

Installation and Customization Guide SC26-8263

Language Reference SC26-8265

Programmer’s Guide SC26-8264

158 CICS Transaction Server for VSE/ESA Sample Applications Guide

Language Environment for VSE/ESA (LE/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Concepts Guide GC33-6680

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Debugging Guide and Run-Time Messages SC33-6681

Diagnosis Guide SC26-8060

Fact Sheet GC33-6679

Installation and Customization Guide SC33-6682

LE/VSE Enhancements SC33-6778

Licensed Program Specification GC33-6683

Programming Guide SC33-6684

Programming Reference SC33-6685

Run-Time Migration Guide SC33-6687

Writing Interlanguage Communication Applications SC33-6686

 VSE/ICCF

Book title Order number

Adminstration and Operations SC33-6738

User’s Guide SC33-6739

 VSE/POWER

Book title Order number

Administration and Operation SC33-6733

Application Programming SC33-6736

Networking Guide SC33-6735

Remote Job Entry User’s Guide SC33-6734

 VSE/VSAM

Book title Order number

Commands SC33-6731

User’s Guide and Application Programming SC33-6732

 Bibliography 159

VTAM for VSE/ESA

Book title Order number

Customization LY43-0063

Diagnosis LY43-0065

Data Areas LY43-0104

Messages and Codes SC31-6493

Migration Guide GC31-8072

Network Implementation Guide SC31-6494

Operation SC31-6495

Overview GC31-8114

Programming SC31-6496

Programming for LU6.2 SC31-6497

Release Guide GC31-8090

Resource Definition Reference SC31-6498

Books from VSE/ESA 2.4 optional program libraries

C for VSE/ESA (C/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Diagnosis Guide GC09-2426

Installation and Customization Guide GC09-2422

Language Reference SC09-2425

Licensed Program Specification GC09-2421

Migration Guide SC09-2423

User’s Guide SC09-2424

COBOL for VSE/ESA (COBOL/VSE)

Book title Order number

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8528

General Information GC26-8068

Installation and Customization Guide SC26-8071

Language Reference SC26-8073

Licensed Program Specifications GC26-8069

Migration Guide GC26-8070

Migrating VSE Applications To Advanced COBOL GC26-8349

Programming Guide SC26-8072

160 CICS Transaction Server for VSE/ESA Sample Applications Guide

DB2 Server for VSE

Book title Order number

Application Programming SC09-2393

Database Administration GC09-2389

Installation GC09-2391

Interactive SQL Guide and Reference SC09-2410

Operation SC09-2401

Overview GC08-2386

System Administration GC09-2406

 DL/I VSE

Book title Order number

Application and Database Design SH24-5022

Application Programming: CALL and RQDLI Interface SH12-5411

Application Programming: High-Level Programming Interface SH24-5009

Database Administration SH24-5011

Diagnostic Guide SH24-5002

General Information GH20-1246

Guide for New Users SH24-5001

Interactive Resource Definition and Utilities SH24-5029

Library Guide and Master Index GH24-5008

Licensed Program Specifications GH24-5031

Low-level Code and Continuity Check Feature SH20-9046

Library Guide and Master Index GH24-5008

Messages and Codes SH12-5414

Recovery and Restart Guide SH24-5030

Reference Summary: CALL Program Interface SX24-5103

Reference Summary: System Programming SX24-5104

Reference Summary: HLPI Interface SX24-5120

Release Guide SC33-6211

PL/I for VSE/ESA (PL/I VSE)

Book title Order number

Compile Time Messages and Codes SC26-8059

Debug Tool For VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8058

Installation and Customization Guide SC26-8057

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC26-8056

Programming Guide SC26-8053

Reference Summary SX26-3836

 Bibliography 161

Screen Definition Facility II (SDF II)

Book title Order number

VSE Administrator's Guide SH12-6311

VSE General Introduction SH12-6315

VSE Primer for CICS/BMS Programs SH12-6313

VSE Run-Time Services SH12-6312

162 CICS Transaction Server for VSE/ESA Sample Applications Guide

 Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products,
services, or features discussed in this document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing,
to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in
your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country where such provisions
are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement
may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without
notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs (including this one) and (ii) the mutual use
of the information which has been exchanged, should contact IBM United Kingdom Laboratories, MP151, Hursley
Park, Winchester, Hampshire, England, SO21 2JN. Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent
agreement between us.

 Copyright IBM Corp. 1989,1999 163

Trademarks and service marks

The following terms, used in this publication, are trademarks or service marks of IBM Corporation in the United States
or other countries:

C/370 CICS
CICS OS/2
Common User Access CUA
IBM
VTAM

164 CICS Transaction Server for VSE/ESA Sample Applications Guide

 Index

A
action lists 18
application action bar 5, 16, 19, 29

content 20
fields 19
interaction 21
keyboard interaction 21
layout 20
pull-down window 21
selected emphasis 21
using 19

assembler language
FILEA sample application 125

audio interaction 24

B
base map definition 22
basic mapping support definition 8

minimum, standard, full 8
BMS maps

CUA text model BMS maps 101
FILEA sample BMS maps 133

BMS support 5
BMS/CUA color differences 13

C
C

FILEA sample application 125
canned map definition 22
COBOL

CUA text model 67
FILEA sample application 125

COBOL/VSE 1
color and emphasis 13
color assumptions 13
column headings and group headings 12
command area 24
common errors 101
common user access definition 6
copyright information 24
CUA consistency 6

physical consistency 6
semantical 6
syntactical consistency 6

CUA text model overview
application action bar use 49
browse from an action list 40
browse panel 37
contextual help 45
designer’s view 47

CUA text model overview (continued)
file I/O 47
file pull-down 34
help panels 47
help pull-down 44
help stub 44
list panel 39
open pop-up 38
pop-up windows 49
print stub 46
program structure 50
pull-down window 49
resource usage 48
routing 51
saving a customer record 43
starting out panel 33
update after verification 42
update from an action list 41

cursor position 15

D
demonstration application 47
descriptive text 12
distributed transaction processing sample

applications 2, 135

E
entry field appearance 17
entry fields 17

F
field prompts 12
file-open pop-up 35
FILEA sample programs

browse (assembler language) 126
browse (C) 126
browse (COBOL) 126
browse (PL/I) 126
inquiry/update (assembler language) 126
inquiry/update (C) 126
inquiry/update (COBOL) 126
inquiry/update (PL/I) 126
low balance report (assembler language) 129
low balance report (C) 129
low balance report (COBOL) 129
low balance report (PL/I) 129
operator instruction (assembler language) 125
operator instruction (C) 125
operator instruction (COBOL) 125
operator instruction (PL/I) 125

 Copyright IBM Corp. 1989,1999 165

FILEA sample programs (continued)
order entry (assembler) 127
order entry (C) 127
order entry (COBOL) 127
order entry (PL/I) 127
order entry queue print (assembler language) 128
order entry queue print (C) 128
order entry queue print (COBOL) 128
order entry queue print (PL/I) 128

function key area 25
keys supported 25

H
help stub 44

I
installation

CUA text model installation 55
FILEA sample installation 121

instructions 12
intercommunication facilities sample applications 2,

135

K
keystroke overlapping 153

L
language considerations 122
list processing 30
look-aside query 153

M
messages 101

action messages 23
message area 23
message content 24
message location 23
message removal 24
notification messages 23
types of messages 23
warning messages 23

multi-line commands 24

N
national language 15
nonprogrammable workstation (NWS) 6

O
overlapping keystroking 153

overlay map definition 22
overlaying maps 101

cursor position 101

P
panel area separators 12
panel elements 11
panel id 11
panel title 11
partition samples 153
personal computers 5
PL/I

FILEA sample application 125
pop-ups 101
pregenerated system

sample VSAM file 131
print 46
programmable workstation (PWS) 6
programs, FILEA sample (assembler language) 125
programs, FILEA sample (C) 125
programs, FILEA sample (COBOL) 125
programs, FILEA sample (PL/I) 125
prompt 19
protected text 12
pseudo-conversational 1
pull-down window 19, 21

using 19
pull-downs 101
pull-downs and pop-ups 22

BMS support 22
path length 22

R
retrieve 24
rules to work by 3

S
SAA (Systems Application Architecture) 5
sample application programs

browse FILEA sample program (3270) 126
distributed transaction processing sample

applications 2, 135
FILEA sample applications 119
operator instruction FILEA sample program

(3270) 125
order entry FILEA sample program (3270) 127
order entry queue print FILEA sample program

(3270) 128
report FILEA sample program (3270) 129
update FILEA sample program (3270) 126

sample utilities
intercommunication facilities 2, 135

166 CICS Transaction Server for VSE/ESA Sample Applications Guide

scrollable entry fields 17
scrollable selection fields and lists 17
scrolling panel areas 25
selection cursor, moving 15
selection element emphasis 17
selection field initial conditions 17
selection fields 16
Systems Application Architecture (SAA) 5

T
threshold 9, 29

threshold 1 9
threshold 2 10
threshold 3 10
threshold 4 10

transient data sample 155

U
unavailable emphasis 17
user interface design 9

W
window sizing 11

 Index 167

Sending your comments to IBM
CICS Transaction Server for VSE/ESA

Sample Applications Guide

SC33-1713-00

If you want to send to IBM any comments you have about this book, please use one of the methods
listed below. Feel free to comment on anything you regard as a specific error or omission in the subject
matter, and on the clarity, organization or completeness of the book itself.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

 � By mail:

IBM UK Laboratories
 Information Development

Mail Point 095
 Hursley Park

Winchester, SO21 2JN
 England

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Email: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

IBM

Program Number: 5648-054

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1713-ðð

Spine information:

IBM CICS TS for VSE/ESA Sample Applications Guide Release 1

	Preface
	Notes on terminology

	Chapter 1. Introduction
	The CUA text level application
	The FILEA sample application programs
	The CICS intercommunication sample application programs

	Part 1. The common user access interface (CUA) sample
	Chapter 2. Introduction to the CUA guidelines
	Systems Application Architecture
	The CUA interface
	Basic mapping support
	The advantages of CUA
	Designing the user interface

	Chapter 3. BMS and CUA panel displays
	Panel elements
	Color and emphasis

	Chapter 4. BMS and CUA panel entry and selection
	Moving the selection cursor
	Selection fields
	Entry fields
	Action lists

	Chapter 5. BMS and CUA user dialogs
	Prompt
	Action bar and pull-downs
	Pull-downs and pop-ups
	Message area
	Command area
	Function key area
	Scrolling panel areas

	Chapter 6. BMS application design for the CUA entry model
	Chapter 7. BMS application design for the CUA text model
	Some application design considerations
	The end-user's view
	The designer's view

	Chapter 8. Installing and running the CUA text model application
	Generating the BMS maps
	Translating, compiling, and link-editing the application programs
	Creating the VSAM files
	Installing and running the application on your CICS region

	Chapter 9. CUA text model program descriptions
	Program DFH0VT1 – primary panel
	Program DFH0VLST – list panel handler
	Program DFH0VNEW – new customer panel processing
	Program DFH0VBRW – browse customer details panel processing
	Program DFH0VUPD – update customer record panel processing
	Program DFH0VDEL – delete customer details panel processing
	Program DFH0VOL – overlay handler
	Program DFH0VOPN – open file pop-up handler
	Program DFH0VPRT – print pop-up handler
	Program DFH0VSAS – save customer details pop-up handler
	Program DFH0VHLP – help pop-up handler
	Program DFH0VHP – contextual help pop-up handler
	Program DFH0VABT – about pop-up handler
	Program DFH0VTBL – table router
	Program DFH0VAB – abend handler
	Program DFH0VRIO – customer data file handler
	Program DFH0VLIO – help file handler

	Chapter 10. CUA text model file and copybook descriptions
	File: DFH0FUS customer detail file
	File: DFH0FAI customer detail file - alternate index
	File: DFH0FHLP help pop-up data file
	Copybook: DFH0BCR customer record layout
	Copybook: DFH0BCA commarea
	Copybook: DFH0BFKT variable function key layout
	Copybook: DFH0BFPD redefinition of file pull-down DSECT
	Copybook: DFH0BHPD redefinition of help pull-down DSECT
	Copybook: DFH0BHP redefinition of help pop-up
	Copybook: DFH0BHT help file key table
	Copybook: DFH0BLST redefinition of the list base panel
	Copybook: DFH0BMSG application message table
	Copybook: DFH0BRT program routing control table
	Copybook: DFH0BTSQ TS queue details
	Copybook: DFH0BHR help text TS queue layout

	Chapter 11. CUA text model BMS maps
	Map T1: map set DFH0T1 (primary panel to sample application)
	Map LST: map set DFH0LST (list processing - base panel)
	Map NEW: map set DFH0NEW (new customer record - base panel)
	Map BRW: map set DFH0BRW (browse customer details - base panel)
	Map UPD: map set DFH0UPD (update customer details - base panel)
	Map DEL: map set DFH0DEL (Delete a customer record - base panel)
	Map FPD: map set DFH0FPD (file pull-down)
	Map HPD: map set DFH0HPD (help pull-down)
	Map OPN: map set DFH0OPN (file-open pop-up)
	Map PRT: map set DFH0PRT (print pop-up)
	Map SAS: map set DFH0SAS (save changed customer record pop-up)
	Map HPOP: map set DFH0HP (contextual help pop-up)
	Map ABT: map set DFH0ABT (about the sample application pop-up)
	Map HLP: map set DFH0HLP (the help stub full screen pop-up)
	Map AB: map set DFH0AB (abend handling)

	Part 2. FILEA sample applications
	Chapter 12. Installing and running the FILEA sample applications
	Installing the sample groups
	Language considerations
	Running the sample applications

	Chapter 13. FILEA sample application program descriptions
	Chapter 14. FILEA sample application file description
	Chapter 15. FILEA sample application BMS maps

	Part 3. Intercommunication sample applications
	Chapter 16. The intercommunication sample applications
	Intercommunication sample 1 – temporary storage queue transfer
	Intercommunication sample 2 – remote file browse
	Intercommunication sample 3 – remote record retrieval
	Intercommunication sample 4 – CICS to CICS conversation

	Part 4. BMS partition and transient data samples
	Chapter 17. The BMS partition samples
	Chapter 18. The transient data sample (DFH$TDWT)
	Bibliography
	Books from VSE/ESA 2.4 base program libraries
	Books from VSE/ESA 2.4 optional program libraries

	Notices
	Trademarks and service marks

	Index

